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Preface

This book is about linear genetic programming (LGP), a variant of GP
that evolves computer programs as sequences of instructions of an imper-
ative programming language. It is a comprehensive text with a strong
experimental basis and an in-depth focus on structural aspects of the lin-
ear program representation.

The three major objectives of this book are:

� To discuss linear genetic programming in a broader context and to
contrast it with tree-based genetic programming.

� To develop advanced methods and efficient genetic operators for the
imperative representation to produce both better and shorter program
solutions.

� To give a better understanding for the intricate effects of operators on
evolutionary processes and emergent phenomena in linear GP.

Part I of the book is dedicated to laying a foundation for basic understand-
ing as well as to providing methods for analysis. The first two chapters
give an introduction to evolutionary computation, genetic programming,
and linear GP.

Chapter 3 presents efficient algorithms for analyzing the imperative and
functional structure of linear genetic programs during runtime. The spe-
cial program representation used in this book can be transformed into
directed acyclic graphs (DAGs). So-called structurally noneffective code
can be identified that is disconnected from the effective data flow and
independent of program semantics. Other important parameters of linear
programs include the number of effective registers at a certain program
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position, the dependence degree of effective instructions, and the effective
dependence distance.

Chapter 4 concludes Part I and is dedicated to a comparison of stan-
dard LGP with neural networks on medical diagnosis data. Both machine
learning techniques turn out to be competitive in terms of generalization
ability and learning speed, if certain efficiency considerations are taken
into account.

Part II is concerned with methods for evolutionary search, and how they
can be improved. In Chapters 5 and 6 we discuss and develop variation
operators for the linear (imperative) representation. The most efficient
solutions – concerning highest prediction accuracy and lowest complexity
– are obtained if only one effective instruction is changed or created at a
time. This demonstrates the high power of applying mutations exclusively
in linear GP. Both chapters also investigate the influence of variation-
specific parameters.

General parameter of linear GP are the subject of Chapter 7. For instance,
the number of registers used by the imperative programs determines their
functional structure, expressed in features like the maximum width of the
DAG.

At this point the worth of LGP has been established beyond doubt, so it
is time for another comparison on a wider range of benchmark problems.
In Chapter 8 two advanced variants of linear GP clearly outperform tree-
based GP, especially if the size of solutions is respected. This concludes
Part II of the book.

Part III is dedicated to the analysis and control of different GP features.
Chapter 9 will look at the diversity of code and the effective step size of
operators. How can it be measured, how can it be controlled, and to what
effect does this lead? Among other things, the efficiency of the evolution-
ary search is improved by a novel multi-objective selection method. Even
without explicit control, the effective step size of mutations decreases over
the generations due to an increasing robustness of effective code.

The phenomenon of code bloat is at the center of interest in Chapter 10.
It is a well-known problem that genetic programs grow – mostly by non-
effective code – without showing corresponding improvements in fitness.
Neutral variations are identified as an indirect but major cause of code
growth. It turns out that linear programs hardly grow without neutral
variations if the step size is limited to one instruction. In general, code
growth in linear GP occurs to be much more aggressive with recombina-
tion than with mutation.
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Most results presented in this book refer to genetic programs as a single
sequence of instructions. Program teams are investigated in Chapter 11
as a way to enlarge the complexity and dimension of LGP solutions.

All in all the book is an empirical investigation of considerable magnitude.
Its detailed text is supported by 115 tables and 132 figures in total and
describes an even higher number of different experiments, comprising ten
thousands of documented GP runs.

We hope that readers will enjoy studying this book and that they get
inspired by learning new arguments and aspects about this interesting
branch of genetic programming and evolutionary computation. We are
convinced that the text makes a valuable contribution to a more thor-
ough and deeper understanding of what actually goes on in the evolution
of imperative computer programs. It provides sufficient introductory ma-
terial for learners and serves as a comprehensive resource of information
for readers who are familiar with the field.

Markus Brameier and Wolfgang Banzhaf,

Aarhus and St. John’s, June 2006
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Chapter 1

INTRODUCTION

Natural evolution has always been a source of inspiration for science and
engineering. “Endless forms, most beautiful”, as Darwin put it. Who
would not marvel at the unbelievable variety of life, who would not ad-
mire its complexity? A process that could bring about such wonders in
nature, couldn’t we glean from it some tricks that would be useful for our
own activities? Couldn’t we learn some methods for the design of other
systems, for instance, machines and their behaviors? It is along these
lines of thought that algorithms where conceived, able to catch aspects of
natural evolution.

1.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) mimic aspects of natural evolution for the
purpose of optimizing a solution to a predefined problem. Following Dar-
win’s principle of natural selection, differential fitness advantages are ex-
ploited in a population of solutions to gradually improve the state of that
population. The application of these principles, often referred to as ar-
tificial evolution, led to different approaches, such as genetic algorithms
(GAs), evolution strategies (ES), and evolutionary programming (EP). A
comparatively young research area in this context is genetic programming
(GP). Evolutionary algorithms as a whole, together with neural networks
and fuzzy logic, are considered methods of computational intelligence [120].

A general evolutionary algorithm is a radical abstraction from its biolog-
ical model and may be summarized as follows:
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Algorithm 1.1 (general evolutionary algorithm)

1. Randomly initialize a population of individual solutions.

2. Select individuals from the population that are fitter than others by us-
ing a certain selection method. The fitness measure defines the problem
the algorithm is expected to solve.

3. Generate new variants by applying the following genetic operators with
certain probabilities:

� Reproduction: Copy an individual without change.

� Recombination: Randomly exchange substructures between indi-
viduals.

� Mutation: Randomly replace a substructure in an individual.

4. If the termination criterion is not met, → 2.

5. Stop. The best individual represents the best solution found.

While genetic algorithms [50, 41] started out with individuals represented
as fixed-length binary strings, evolution strategies [110, 119] traditionally
operated on real-valued vectors. Both techniques have developed over
the years and borders are more blurred between them than they used to
be, yet they are applied primarily to parameter optimization problems.
Genetic programming [64, 9], on the other hand, varies individuals on
a symbolic level as computer programs. That is, the representation is
usually executable and of variable size and shape.

In a more general sense genetic programming may also be regarded as a
method of machine learning, a field that studies computer algorithms able
to learn from experience [84]. Especially some of the early machine learn-
ing approaches show clear resemblance to modern GP. Friedberg [39, 40]
attempted to solve simple problems by teaching a computer to write com-
puter programs. Due to his choice of search strategy, however, his results
did not lead to a breakthrough. Later, evolutionary programming [37, 38]
was introduced as a method using finite state automata (FSA) as repre-
sentation of individuals. This work could arguably be called the first suc-
cessful evolutionary algorithm for automatic program induction.1 It was
Cramer [30], however, who first applied EAs to more general programs. He
experimented with linear structures and tree-based hierarchical program
representations. The potential of this approach was only later uncovered

1Program in this case would be the set of state transitions of the FSA.
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through the extensive work of Koza [63–67]. He and his coworkers could
demonstrate the feasibility of this approach in well-known application ar-
eas. He also gave the method the name genetic programming.

1.2 Genetic Programming

Genetic programming (GP) may be defined generally as any direct evo-
lution or breeding of computer programs for the purpose of inductive
learning. In particular, this definition leaves GP independent of a special
type of program representation. GP may, in principle, solve the same
range of problems as other machine learning techniques, e.g., neural net-
works. Indeed, most of today’s real-world applications of GP demonstrate
its ability in data mining, as shown by the discovery of regularities within
large data domains. For supervised learning tasks that means to create
predictive models, i.e., classifiers or approximators, that learn a set of
known and labeled data and generalize to a set of unknown and unla-
beled data. Other application areas of GP comprise, for instance, control
problems, time series prediction, signal processing and image processing.

Genetic programs may be regarded as prediction models that approxi-
mate an objective function f : In → Om with In denoting the input
data in a space of dimension n and Om denoting the output data in an
m-dimensional space. Most cases considered in this book will have an
output space dimension of only m = 1. Genetic programs can also com-
plete missing (unknown) parts of an existing model. Other evolutionary
algorithms, like genetic algorithms or evolution strategies, minimize an
existing objective function or model by searching for the optimum setting
of its variables (model parameters).

Suppose, an objective function f represents the problem to be solved by
GP. In practice this function is unknown and defined only incompletely by
a relatively small set of input-output vectors T = {(�i, �o) | �i ∈ I ′ ⊆ In, �o ∈
O′ ⊆ Om, f(�i) = �o}. The evolutionary process searches for a program
or algorithm that represents the best solution to this problem, i.e., that
maps the given training (data) set T to a function in the best possible
way. Training samples are also referred to as fitness cases in GP. GP
models are not only expected to predict the outputs of all training inputs
I ′ most precisely but also many inputs from In\I ′. That is, the genetic
programs are required to generalize from training data to unknown data.
The generalization ability is verified by means of input-output examples
from the same data domain as (but different from) the training examples.

The genotype space G in GP includes all programs of a certain representa-
tion (type) that can be composed of elements from a programming language
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L. If we assume that programs do not induce side effects the phenotype
space P denotes the set of all mathematical functions fgp : In → Om with
fgp ∈ P that can be expressed by programs gp ∈ G. The programming
language L is defined by the user over an instruction set (or function
set) and a so-called terminal set. The latter may comprise input values,
constants, and memory variables.

The fitness function F : P → V measures the prediction quality, the
fitness, of a phenotype fgp ∈ P. For this book we assume the range
of fitness values to be V = IR+

0 for continuous problems and V = IN0

for discrete problems. Fitness is usually derived from a mapping error
between the predicted model fgp and the desired model f . Because fitness
cases represent in general only a fraction of the problem data space, fitness
may only partially reflect the phenotype behavior of a program.

In most situations, fitness evaluation of individuals is by far the most time-
critical step of a GP algorithm since a genetic program has to be executed
at least once for each fitness case in the fitness function. Prior to that,
the genotype representation gp has to be translated into the phenotype
function fgp. Such a genotype-phenotype mapping is usually deterministic
and produced by an interpreter fint : G → P with fint(gp) = fgp and
F(gp) := F(fgp), the fitness of a genotype being the same as the fitness
of its phenotype. Neither function fint nor F are bijective because a
phenotype may be represented by more than one genotype and different
phenotypes may have the same fitness.

Composition of the instruction set and the terminal set determines the
expressiveness of programming language L. On the one hand, this lan-
guage must be powerful enough to represent the optimum solution of our
problem or at least a good local optimum. On the other hand, finding a so-
lution becomes more difficult if the search space of programs G is increased
unnecessarily by too large a set of program components. If L is Turing-
complete, every computable function may be found in principle, provided
that the maximum program size is sufficiently large to represent such a
function. In practice, however, it is recommended to define a language as
small as possible. In order to resolve this trade-off situation genetic pro-
gramming requires knowledge from the user about the problem domain.
Because Turing-completeness requires infinite loops and we cannot know
beforehand whether a program will terminate or not, a maximum bound
on execution time will be necessary. This can be implemented through a
restriction on the maximum number of executed instructions.

There are many ways to represent a certain function by a program, mostly
due to neutral code in genotypes that is not expressed in the phenotype.
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The complexity of a genetic program is usually measured as the number
of instructions it holds. A growing variable-length representation is im-
portant in GP since, in general, the minimum representation size of the
optimum solution is unknown. Following the principle of Occam’s Ra-
zor, among all solutions with equal fitness the shortest solution should
be preferred. This solution is supposed to achieve the best generalization
performance. In GP, how compact a program will be possible for a cer-
tain objective function depends on the expressiveness of the programming
language used, and on the variability of the representation.

In reality, the maximum size of programs has to be restricted to pre-
vent programs from growing without bound and consuming all system
resources. If no maximum restriction is imposed on the representation
size, then not only the generalization ability of solutions may be reduced,
but also the efficiency of genetic operations. Additionally, a longer exe-
cution time of programs increases the time for fitness evaluation. Should
one choose too small a maximum complexity, then the optimum solution
may be altogether impossible to find due to insufficient space for a proper
representation. Again it is up to the user to find a good trade-off between
these conflicting goals. Yet, both the success of the evolutionary search
and the growth of programs depend not only on the representation but
on the variation operators, too.

Let P (t) ⊂ G denote the state of a population at time t. Training time or
runtime of evolutionary algorithms is often measured in terms of genera-
tions or generation equivalents. From a random subpopulation P ′ ⊆ P (t)
of n = |P ′| individuals a selection operator s : Gn × Pn → Gμ selects
μ < n individuals for variation. The selection operator determines from
which individuals the search will be continued.

A genetic operator or variation operator v : Gμ → Gλ creates λ offspring
out of the μ selected parents from population P (t). These λ new individ-
uals become part of population P (t + 1). In other words, λ new search
points are visited in genotype space. If μ < λ a parent produces more
than one offspring. Usually recombination in GP creates two offspring
from two parents, i.e., μ = λ = 2, while mutation or reproduction pro-
duce μ = λ = 1. All genetic operators must guarantee, first, that no
syntactically incorrect programs are generated during evolution (syntac-
tic closure). Second, the value and the type of each instruction argument
must be drawn from defined ranges (semantic protection). The calculation
of a new search point is much less expensive than the fitness evaluation
in GP and may be neglected.
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1.3 Linear Genetic Programming

In recent years different variants of genetic programming have emerged.
All follow the basic idea of GP to automatically evolve computer pro-
grams. Three basic forms of representation may be distinguished for ge-
netic programs. Besides the traditional tree representations, these are
linear and graph representations [9].

The tree programs used in Koza-style genetic programming correspond
to expressions (syntax trees) from a functional programming language.
This classical approach is also referred to as tree-based genetic program-
ming (TGP). Functions are located at inner nodes, while leaves of the tree
hold input values or constants. In contrast, linear genetic programming
(LGP) is a GP variant that evolves sequences of instructions from an im-
perative programming language or from a machine language. In this book
instructions are restricted to operations – including conditional operations
– that accept a minimum number of constants or memory variables, called
registers, and assign the result to another register, e.g., r0 := r1 + 1.

The term linear refers to the structure of the (imperative) program rep-
resentation. It does not stand for functional genetic programs that are
restricted to a linear list of nodes only. Moreover, it does not mean that
the method itself is linear, i.e., may solve linearly separable problems only.
On the contrary, genetic programs normally represent highly non-linear
solutions due to their inherent power of expression.

The use of linear bit sequences in GP again goes back to Cramer and his
JB language [30]. A more general linear approach was introduced in [7].
Nordin’s idea of subjecting machine code to evolution was the first GP
approach [90] that operated directly on an imperative representation. It
was subsequently expanded and developed into the AIMGP (Automatic
Induction of Machine code by Genetic Programming) approach [93, 9]. In
AIMGP individuals are manipulated as binary machine code in memory
and are executed directly without passing an interpreter during the fitness
calculation. This results in a significant speedup compared to interpreting
systems. In [93] machine code GP and the application of this linear GP
approach to different problem domains have been studied.

In this book we will concentrate on fundamental aspects of the linear
program representation and examine its differences to a tree representa-
tion. Advanced LGP techniques are developed with the goal to be as
independent as possible from any special type of imperative programming
language. Transfer of results to machine code GP is nevertheless possible
over wide areas. The methods we present here are not meant to be spe-
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cific to a certain application area, but can be applied to a wide range of
problems.

There are two basic differences between a linear program and a tree pro-
gram:

(1) A linear genetic program can be seen as a data flow graph produced
by multiple usage of register content. That is, on the functional level
the evolved imperative structure represents a special directed graph. In
traditional tree GP the data flow is more rigidly determined by the tree
structure of the program.

The higher variability of linear program graphs allows the result of subpro-
grams (subgraphs) to be reused multiple times during calculation. This
permits linear solutions to be more compact in size than tree solutions
and to express more complex calculations with less instructions. The step
size of variations may also be easier to control in a program structure with
higher degrees of freedom than in a tree structure. How much advantage
evolution can take of these features will strongly depend on the design of
appropriate variation operators.

(2) Special noneffective code segments coexist with effective code in lin-
ear genetic programs. They result from the imperative program struc-
ture – not from program execution – and can be detected efficiently and
completely. Such structurally noneffective code manipulates registers not
having an impact on the program output at the current position. It is
thus not connected to the data flow generated by the effective code. In a
tree program, by definition, all program components are connected to the
root. As a result, the existence of noneffective code necessarily depends
on program semantics.

Noneffective code in genetic programs is also referred to as introns. In
general, it denotes instructions without any influence on the program
behavior. Noneffective code is considered to be beneficial during evolution
for two major reasons. First, it may act as a protection that reduces
the effect of variation on the effective code. Second, noneffective code
allows variations to remain neutral in terms of fitness change. In linear
programs introns may be created easily at each position with almost the
same probability.

According to the above notion, we distinguish between an absolute pro-
gram and an effective program in linear GP. While the former includes
all instructions, the latter contains only the structurally effective instruc-
tions. The (effective) length of a program is measured in the number of
(effective) instructions it holds. Each program position or line is supposed
to hold exactly one instruction. Even if the absolute length of a program
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has reached the maximum complexity it can still vary in the size of its
effective code. In our approach the effective length of a program is par-
ticularly important since it reflects the number of executed instructions
and, thus, the execution time.

A more detailed introduction to linear GP will be given in Chapter 2. For
a detailed description of tree-based GP we refer the reader to Chapter 8.

1.4 Motivation

The traditional tree representation of programs is still dominating re-
search in the area of GP, even though several different GP approaches
and program representations exist. A general motivation for investigating
different representations in evolutionary computation is that for each rep-
resentation form, as is the case for different learning methods in general,
certain problem domains may exist that are more suitable than others.
This holds true even if the No Free Lunch (NFL) theorem [139] states
that there is no search algorithm better on average than any other search
algorithm over the set F = {f : S → W} of all functions (problems) f for
a finite search space S.

A special concern of this book will be to convince the reader that there
are some important advantages of a linear representation of programs
compared to a tree representation. Linear GP is not only the evolution of
imperative programs, but may be seen as the evolution of special program
graphs. Mostly due to its weaker constraints the representation allows (1)
smaller variation step sizes and (2) more compact (effective) solutions that
may be executed more efficiently.

It can be observed that linear GP is often used in applications or
for representation-independent GP techniques, but is less often consid-
ered for providing a basic understanding of GP or for the analysis of
representation-specific questions. We aim to fill this gap with the present
book. Basically, the research focus is on structural aspects of the linear
representation rather than on problem-specific or semantic aspects, like
the evolved programming language.

First, an exhaustive analysis of the program representation is performed
regarding the imperative and functional structure. Analyzing program
structure at runtime serves as a tool for better understanding the func-
tionality of linear GP. Information about program structure is further ex-
ploited for various techniques, including the acceleration of runtime and
the design of more efficient genetic operators among others.
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The general objective will be the enhancement of linear GP on the me-
thodical level in order to produce more precise prediction models, in the
first place, and more efficient prediction models, in the second place. In
particular, the control of variation step size on the symbolic level will turn
out to be a key criterion for obtaining more successful solutions. Other
important points of interest in this context, will be the control of neutral
variations and the amount of noneffective code that emerges in programs.

The second major objective will be the analysis of general GP phenomena,
such as intron code, neutral variations, and code growth, for the linear
variant of GP.



PART I

FUNDAMENTAL ANALYSIS



Chapter 2

BASIC CONCEPTS OF LINEAR
GENETIC PROGRAMMING

In this chapter linear genetic programming (LGP) will be explored in
further detail. The basis of the specific linear GP variant we want to
investigate in this book will be described, in particular the programming
language used for evolution, the representation of individuals, and the spe-
cific evolutionary algorithm employed. This will form the core of our LGP
system, while fundamental concepts of linear GP will also be discussed,
including various forms of program execution.

Linear GP operates with imperative programs. All discussions and ex-
periments in this book are conducted independently from a special type
of programming language or processor architecture. Even though genetic
programs are interpreted and partly noted in the high-level language C,
the applied programming concepts exist principally in or may be trans-
lated into most modern imperative programming languages, down to the
level of machine languages.

2.1 Representation of Programs

The imperative programming concept is closely related to the underlying
machine language, in contrast to the functional programming paradigm.
All modern CPUs are based on the principle of the von Neumann archi-
tecture, a computing machine composed of a set of registers and basic
instructions that operate and manipulate their content. A program of
such a register machine, accordingly, denotes a sequence of instructions
whose order has to be respected during execution.
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void gp(r)

double r[8];

{ ...

r[0] = r[5] + 71;

// r[7] = r[0] - 59;

if (r[1] > 0)

if (r[5] > 2)

r[4] = r[2] * r[1];

// r[2] = r[5] + r[4];

r[6] = r[4] * 13;

r[1] = r[3] / 2;

// if (r[0] > r[1])

// r[3] = r[5] * r[5];

r[7] = r[6] - 2;

// r[5] = r[7] + 15;

if (r[1] <= r[6])

r[0] = sin(r[7]);

}

Example 2.1. LGP program in C notation. Commented instructions (marked with //)
have no effect on program output stored in register r[0] (see Section 3.2.1).

Basically, an imperative instruction includes an operation on operand (or
source) registers and an assignment of the result of that operation to a
destination register. Instruction formats exist for zero,1 one, two or three
registers. Most modern machine languages are based on 2-register or 3-
register instructions. Three-register instructions operate on two arbitrary
registers (or constants) and assign the result to a third register, e.g., ri :=
rj+rk. In 2-register instructions, instead, either the implemented operator
requires only one operand, e.g., ri := sin(rj), or the destination register
acts as a second operand, e.g., ri := ri + rj . Due to a higher degree of
freedom, a program with 3-register instructions may be more compact in
size than a program consisting of 2-register instructions. Here we will
study 3-register instructions with a free choice of operands.

In general, at most one operation per instruction is permitted which usu-
ally has one or two operands. Note that a higher number of operators
or operands in instructions would not necessarily increase expressiveness
or variability of programs. Such instructions would assign the result of a
more complex expression to a register and would make genetic operations
more complicated.

In the LGP system described here and outlined in [21] a genetic program
is interpreted as a variable-length sequence of simple C instructions. In
order to apply a program solution directly to a problem domain without

10-register instructions operate on a stack.
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using a special interpreter, the internal representation is translated into C
code.2 An excerpt of a linear genetic program, as exported by the system,
is given in Example 2.1. In the following, the term genetic program always
refers to the internal LGP representation that we will discuss in more
detail now.

2.1.1 Coding of Instructions

In our implementation all registers hold floating-point values. Internally,
constants are stored in registers that are write-protected, i.e., may not be-
come destination registers. As a consequence, the set of possible constants
remains fixed. Constants are addressed by indices in the internal program
representation just like variable registers and operators. Constant regis-
ters are only initialized once at the beginning of a run with values from
a user-defined range. This has an advantage over encoding constants ex-
plicitly in program instructions because memory space is saved, especially
insofar as real-valued constants or larger integer constants are concerned.
A continuous variability of constants by the genetic operators is really
not needed and should be sufficiently counterbalanced by interpolation
in the genetic programs. Furthermore, a free manipulation of real-valued
constants in programs could result in solutions that may not be exported
accurately. Because floating-point values can be printed only to a certain
precision, rounding errors might be reinforced during program execution.

Each of the maximum of four instruction components, the instruction
identifier and a maximum of three register indices, can be encoded into
one byte of memory if we accept that the maximum number of variable
registers and constant registers is restricted to 256. For most problems
LGP is run on this will be absolutely sufficient.

So for instance, an instruction ri := rj + rk reduces to a vector of indices
< id(+), i, j, k >. Actually, an instruction is held as a single 32-bit inte-
ger value. Such a coding of instructions is similar to a representation as
machine code [90, 9] but can be chosen independently from the type of
processor to interpret the program. In particular, this coding allows an in-
struction component to be accessed efficiently by casting the integer value
which corresponds to the instruction into an array of 4 bytes. A program
is then represented by an array of integers. A compact representation

2For the program instructions applied throughout the book translation is straightforward. Rep-
resentation and translation of more advanced programming concepts will be discussed briefly
later in this chapter.
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like this is not only memory-efficient but allows efficient manipulation of
programs as well as efficient interpretation (see Section 2.2).

In the following we will refer to a register only as a variable register. A
constant register is identified with its constant value.

In linear GP a user-defined number of variable registers, the register set, is
made available to a genetic program. Besides the minimal number of input
registers required to hold the program inputs before execution, additional
registers can be provided in order to facilitate calculations. Normally
these so-called calculation registers are initialized with a constant value
(e.g., 1) each time a program is executed on a fitness case. Only for
special applications like time series predictions with a defined order on the
fitness cases it may be advantageous to change this. Should calculation
registers be initialized only once before fitness evaluation, an exchange of
information is enabled between successive executions of the same program
for different fitness cases.

A sufficient number of registers is important for the performance of linear
GP, especially if input dimension and number of input registers are low. In
general, the number of registers determines the number of program paths
(in the functional representation) that can be calculated in parallel. If an
insufficient number is supplied there will be too many conflicts between
registers and valuable information will be overwritten.

One or more input/calculation registers are defined as output register(s).
The standard output register is register r0. The imperative program struc-
ture also facilitates the use of multiple program outputs, whereas tree GP
can calculate only one output (see also Section 8.1).

2.1.2 Instruction Set

The instruction set defines the particular programming language that is
evolved. The LGP system is based on two fundamental instruction type –
operations3 and conditional branches. Table 2.1 lists the general notation
of all instructions used in experiments throughout the book.

Two-operand instructions may either possess two indexed variables (regis-
ters) ri as operands or one indexed variable and a constant. One-operand
instructions only use register operands. This way, assignments of constant
values, e.g., r0 := 1+2 or r0 := sin(1), are avoided automatically (see also
Section 7.3). If there cannot be more than one constant per instruction,
the percentage of instructions holding a constant is equal to the propor-

3Functions will be identified with operators in the following.
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Table 2.1. LGP instruction types.

Instruction type General notation Input range

Arithmetic operations ri := rj + rk ri, rj , rk ∈ IR

ri := rj − rk

ri := rj × rk

ri := rj / rk

Exponential functions ri := rj
(rk) ri, rj , rk ∈ IR

ri := erj

ri := ln(rj)

ri := rj
2

ri :=
√

rj

Trigonomic functions ri := sin(rj) ri, rj , rk ∈ IR

ri := cos(rj)

Boolean operations ri := rj ∧ rk ri, rj , rk ∈ IB

ri := rj ∨ rk

ri := ¬ rj

Conditional branches if (rj > rk) rj , rk ∈ IR

if (rj ≤ rk)

if (rj) rj ∈ IB

tion of constants pconst in programs. This is also the selection probability
of a constant operand during initialization of programs and during mu-
tations. The influence of this parameter will be analyzed in Section 7.3.
In most other experiments documented in this book pconst = 0.5 will be
used.

In genetic programming it must be guaranteed somehow that only valid
programs are created. The genetic operators – recombination and muta-
tion – have to maintain the syntactic correctness of newly created pro-
grams. In linear GP, for instance, crossover points may not be selected
inside an instruction and mutations may not exchange an instruction op-
erator for a register. To assure semantic correctness, partially defined
operators and functions may be protected by returning a high value for
undefined input, e.g., cundef := 106. Table 2.2 shows all instructions from
Table 2.1 that have to be protected from certain input ranges and pro-
vides their respective definition. The return of high values will act as
a penalty for programs that use these otherwise undefined operations. If
low values would be returned, i.e., cundef := 1, protected instructions may
be exploited more easily by evolution for the creation of semantic introns
(see Section 3.2.2).

In order to minimize the input range assigned to a semantically senseless
function value, undefined negative inputs have been mapped to defined



18 Linear Genetic Programming

Table 2.2. Definitions of protected instructions.

Instruction Protected definition

ri := rj / rk if (rk �= 0) ri := rj / rk else ri := rj + cundef

ri := rj
rk if (|rk| ≤ 10) ri := |rj |rk else ri := rj + rk + cundef

ri := erj if (|rj | ≤ 32) ri := erj else ri := rj + cundef

ri := ln(rj) if (rj �= 0) ri := ln(|rj |) else ri := rj + cundef

ri :=
√

rj ri :=
p|rj |

absolute inputs in Table 2.2. This permits evolution to integrate pro-
tected instructions into robust program semantics more easily. Keijzer
[58] recommends the use of interval arithmetic and linear scaling instead
of protecting mathematical operators for symbolic regression.

The ability of genetic programming to find a solution strongly depends
on the expressiveness of the instruction set. A complete instruction set
contains all elements that are necessary to build the optimal solution, pro-
vided that the number of variables registers and the range of constants are
sufficient. On the other hand, the dimension of the search space, which
contains all possible programs that can be built from these instructions,
increases exponentially with the number of instructions and registers. If
we take into account that the initial population usually represents a small
fraction of the complete search space, the probability of finding the op-
timal solution or a good approximation decreases significantly with too
many basic program elements that are useless. Moreover, the probability
by which a certain instruction is selected as well as its frequency in the
population influence the success rate of finding a solution. In order to
exert better control over the selection probabilities of instruction types,
the instruction set may contain multiple instances of an instruction.

We will not regard program functions with side effects to the problem en-
vironment, only those that return a single value in a strict mathematical
sense. Side effects may be used for solving control problems. For instance,
a linear program may represent a list of commands (plan) that direct a
robot agent in an environment. Fitness information may then be de-
rived from the agent’s interactions with its environment by reinforcement
learning. In such a case, genetic programs do not represent mathematical
functions.

2.1.3 Branching Concepts

Conditional branches are an important and powerful concept in genetic
programming. In general, programming concepts like branches or loops
allow the control flow given by the structure of the representation to
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be altered. The control flow in linear genetic programs is linear while
the data flow is organized as a directed graph (see Section 3.3). With
conditional branches the control flow (and hence the data flow) may be
different for different input situations, for instance, it may depend on
program semantics.

Classification problems are solved more successfully or even exclusively if
branches are provided. Branches, however, may increase the complexity of
solutions by promoting specialization and by producing semantic introns
(see Chapter 3). Both tendencies may lead to less robust and less general
solutions.

If the condition of a branch instruction, as defined in Table 2.1, is false only
one instruction is skipped (see also discussion in Section 3.3.2). Sequences
of branches are interpreted as nested branches in our system (similar to
interpretation in C). That is, the next non-branch instruction in the pro-
gram is executed only if all conditions are true and is skipped otherwise.
A combination of conditional branch(es) and operation is also referred to
as a conditional operation:

if (<cond1>)
if (<cond2>)
<oper>;

Nested branches allow more complex conditions to be evolved and are
equivalent to connecting single branch conditions by a logical AND. A
disjunction (OR connection) of branch conditions, instead, may be rep-
resented by a sequence of conditional instructions whose operations are
identical:

if (<cond1>)
<oper>;
if (<cond2>)
<oper>;

Alternatively, successive conditions may be interpreted as being connected
either by AND or by OR. This can be achieved in the following way: A
Boolean operator is encoded into each branch identifier. This requires the
information of a binary flag only, which determines how the condition of
a branch instruction is connected to a potentially preceeding or, alterna-
tively, succeeding one in the program (AND or OR). The status of these
flags may be changed during operator mutations. The transformation of
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this representation into a C program becomes slightly more complicated
because each sequence of branches has to be substituted by a single branch
with an equivalent condition of higher order.

2.1.4 Advanced Branching Concepts

A more general branching concept is to allow conditional forward jumps
over a variable number of instructions. The number of instructions
skipped may be either unlimited or it may be selected randomly from
a certain range. In the latter case the actual length of a jump may be de-
termined by a parameter that is encoded in the branch instruction itself,
e.g., using the identifier section or the unused section of the destination
register. It is also possible to do without this additional overhead by using
constant block sizes. Because some instructions of a skipped code block
are usually not effective, evolution may control the semantic effect of a
jump over the number of noneffective instructions within jump blocks.

A transformation of such branches from the internal program representa-
tion into working C code requires constructions like:

if (<cond>) goto <label X>;
<...>
<label X>;

where unique X labels have to be inserted at the end of each jump block.

If one wants to avoid branching into blocks of other branches, jumps
should not be longer than the position of the next branch in a program.
In this way, the number of skipped instructions is limited implicitly and
does not have to be administrated within the branches. Translation into C
is then achieved simply by setting {...} brackets around the jump block.

An interesting variant of the above scheme is to allow jumps to any suc-
ceeding branch instruction in the program. This can be realized by using
an additional pointer with each branch instruction to an arbitrary suc-
cessor branch (absolute jump). Relative jumps to the kth next branch in
program with 1 ≤ k ≤ kmax are also possible, even if such connections are
separated more easily by insertions/deletions of a new branch instruction.
A pointer to a branch that does not exist any more may be automatically
replaced by a valid pointer after variation. The last branch in a program
should always point to the end of the program (k := 0). Hence, control
flow in a linear genetic program may be interpreted as a directed acyclic
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branching graph (see Figure 2.1). The nodes of such a control flow graph
represent subsequences of (non-branch) instructions.

if

if

if

if

if

if

+2

+0

+4

+1

+2

+1

Figure 2.1. Branching graph: Each branch instruction points to a specified succeeding
branch instruction.

In [57] a more general concept of a branching graph is proposed for the
imperative representation. Each node contains an instruction block that
ends with a single if-else-branch. These branches point to two alternative
decision blocks which represent two independent successor nodes. Thus,
instructions may not only be skipped within an otherwise linear control
flow but real parallel subprograms may exist in programs. This form
of representation is called a linear graph since it defines a graph-based
control flow on linear genetic programs. Recall that the term linear genetic
program derives from the linear flow of control that is given by the linear
arrangement of instructions. In Section 3.3 we will see that the data flow
is graph-based already in simple linear genetic programs.

In general, a complex non-linear control flow requires either more so-
phisticated variation operators or repair mechanisms to be applied after
variation. For branching graphs a special crossover operator may be con-
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strained so that only complete nodes or subgraphs of nodes are exchanged
between programs with a certain probability. That is, crossover points
would fall upon branch instructions only. Unrestricted linear crossover
(see Section 2.3.4) may be applied between graph nodes (instruction
blocks) only.

A final branching concept whose capability is discussed here for linear
GP uses an additional endif instruction in the instruction set. Nested
constructions like:

if (<cond>)
<...>
endif

are interpreted such that an endif belongs to an if counterpart if no
branch or only closed branching blocks lie in between. An instruction
that cannot be assigned in this way may either be deleted from the in-
ternal representation or contribute to noneffective code. The strength of
such a concept is to permit an (almost) unconstrained and complex nest-
ing of branches while jumps into other branching blocks cannot occur. A
transformation into C code is achieved simply by setting {...} brackets
around valid branching blocks instead of endif and by not transform-
ing invalid branch instructions at all. In a similar way if-else-endif
constructions may be realized.

2.1.5 Iteration Concepts

Iteration of code by loops plays a rather unimportant role in genetic pro-
gramming. Most GP applications that require loops involve control prob-
lems with the combination of primitive actions of an agent being the
object of evolution. Data flow is usually not necessary in such programs.
Instead, each instruction performs actions with side effects on the prob-
lem environment and fitness is derived from a reinforcement signal. For
the problem classes we focus on here, supervised classification and ap-
proximation, iteration is of minor importance. That is not to say that a
reuse of code by iterations could not result in more compact and elegant
solutions.

In functional programming the concept of loops is unknown. The implicit
iteration concept in functional programs denotes recursions which are,
however, hard to control in tree-based genetic programming [142]. Other-
wise, iterated evaluations of a subtree can have an effect only if functions
produce side effects. In linear GP, assignments represent an implicit side
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effect on memory locations as part of the imperative representation. Nev-
ertheless, the iteration of an instruction segment may only be effective if it
includes at least one effective instruction and if at least one register acts as
both destination register and source register in the same or a combination
of (effective) instructions, e.g., r0 := r0 + 1.

In the following, possible iteration concepts for linear GP will be pre-
sented. These comprise conditional loops and loops with a limited number
of iterations.

One form of iteration in linear programs is a conditional backward jump
corresponding to a while loop in C. The problem with this concept is that
infinite loops can be easily formed by conditions that are always fulfilled.
In general, it is not possible to detect all infinite loops in programs, due
to the halting problem [36]. A solution to remedy this situation is to
terminate a genetic program after a maximal number of instructions. The
result of the program would then, however, depend on the execution time
allowed.

The more recommended option is a loop concept that limits the number
of iterations in each loop. This requires an additional control flow param-
eter which may either be constant or be varied within loop instructions.
Such a construct is usually expressed by a for loop in C. Because only
overlapping loops (not nested loops) need to be avoided, an appropriate
choice to limit the size of loop blocks may be the coevolution of endfor
instructions. Analogous to the interpretation of branches in Section 2.1.4,
a for instruction and a succeeding endfor define a loop block provided
that only closed loops lie in between. All other loop instructions are not
interpreted.

2.1.6 Modularization Concepts

For certain problems modularization may be advantageous in GP. By
using subroutines repeatedly within programs, solutions may become more
compact and the same limited program space can be used more efficiently.
A problem may also be decomposed into simpler subproblems that can be
solved more efficiently in local submodules. In this case, a combination of
subsolutions may result in a simpler and better overall solution.

The most popular modularization concept in tree-based genetic program-
ming is the so-called automatically defined function (ADF) [65]. Basically,
a genetic program is split up into a main program and a certain number
of subprograms (ADFs). The main program calculates its output by us-
ing the coevolved subprograms via function calls. Therefore, ADFs are
treated as part of the main instruction set. Each module type may be com-
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posed of different sets of program components. It is furthermore possible
to define a usage graph that defines which ADF type may call which other
ADF type. Recursions are avoided by prohibiting cycles. The crossover
operator has to be constrained in such a way that only modules of the
same type can be recombined between individuals.

ADFs are an explicit modularization concept since the submodules are
encapsulated with regard to the main program and may only be used
locally in the same individual. Each module is represented by a separate
tree expression [65] or a separate sequence of instructions [93]. To ensure
encapsulation of modules in linear programs, disjoint sets of registers have
to be used. Otherwise, unwanted state transitions between modules might
occur.

ADFs denote subsolutions that are combined by being used in a main
program. In Chapter 11 of this book another explicit form of modulariza-
tion, the evolution of program teams, is investigated. A team comprises
a fixed number of programs that are coevolved as one GP individual. In
principle, all members of a team are supposed to solve the same prob-
lem by receiving the same input data. These members act as modules
of an overall solution such that the member outputs are combined in a
predefined way. A better performance may result from collective decision
making and a specialization of relatively independent program modules.

A more implicit modularization concept that prepares code for reuse is
module acquisition [5]. Here substructures up to a certain maximum size
– not only including full subtrees – are chosen randomly from better pro-
grams. Such modules are replaced by respective function calls and moved
into a global library from where they may be referenced by other in-
dividuals of the population. In linear GP code replacements are more
complicated because subsequences of instructions are usually bound to a
complex register usage in the imperative program context.

A similar method for automatic modularization is subtree encapsulation
[115] where randomly selected subtrees are replaced by symbols that are
added to the terminal set as primitive atoms.

Complex module dependencies may hardly emerge during evolution if
modularization is not really needed for better solutions. In general, if
a programming concept is redundant, the larger search space will nega-
tively influence the ability to find a solution. Moreover, the efficiency of a
programming concept or a program representation in GP always depends
on the variation operators. Thus, even if the expressiveness or flexibility
of a programming concept is high, it may be more difficult for evolution
to take advantage of that strength.
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2.2 Execution of Programs

The processing speed of a learning method may seriously constrain the
complexity or time-dependence of an application. The most time-critical
steps in evolutionary algorithms are the fitness evaluation of individu-
als and/or the calculation of new search points (individuals) by variation
operators. In genetic programming, however, computation costs are dom-
inated by the fitness evaluation because it requires multiple executions of
a program, at least one execution per fitness case. Executing a genetic
program means that the internal program representation is interpreted
following the semantics of the programming language.

Execution

Machine Code

Execution

a)

Interpretation

Internal Representation Internal Representation

Interpretation

Execution

b) c)

Machine Code 

d)

Execution

Effective Program Effective Program

Figure 2.2. Different forms of program execution including (a) interpretation of pro-
grams in GP, (b) elimination of noneffective code in LGP, (c) direct execution of machine
code in AIMGP, and (d) combination of b) and c).

For instance, interpretation in tree GP systems works by traversing the
tree structure of programs in preorder or postorder. While doing so, oper-
ators are applied to operand values that result recursively from executing
all subtrees of the operator node first.

In a special variant of linear GP, called Automatic Induction of Machine
code by Genetic Programming (AIMGP) [90, 9], individuals are repre-
sented and manipulated as binary machine code. Because programs can
be executed directly without passing an interpreter, machine code GP
enjoys a significant speedup in execution compared to interpreting GP
systems. Due to its dependence on specific processor architectures, how-
ever, machine code GP is restricted in portability. Moreover, a machine
code system may be restricted in functionality due to, e.g., the number of
hardware registers resident in the processor.
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In this book we use a different method to accelerate execution (interpre-
tation) of linear genetic programs. The special type of noneffective code
which results from the imperative program structure can be detected effi-
ciently in linear runtime (see [21] and Section 3.2.1). In LGP this noneffec-
tive code is removed from a program before fitness calculation, i.e., before
the resulting effective program is executed over multiple fitness cases. By
doing so, the evaluation time of programs is reduced significantly, espe-
cially if a larger number of fitness cases is to be processed (see below and
Chapter 4). In the example program from Section 2.1 all commented in-
structions are noneffective under the assumption that program output is
stored in register r[0].

Since AIMGP is a special variant of linear GP, both acceleration tech-
niques may be combined such that a machine code representation is pre-
processed by a routine extracting effective parts of code. This results in
the four different ways of executing programs in genetic programming that
are illustrated in Figure 2.2.

An elimination of introns – as noneffective code is frequently called – will
be relevant only if a significant amount of this code is created by the
variation operators. In particular, this is the case for linear crossover (see
Section 2.3.4).

An additional acceleration of runtime in linear GP can be achieved if
the fitness of an individual is recalculated only after effective code has
undergone change (see Section 5.2). Instead of the evaluation time, this
approach reduces the number of evaluations (and program executions)
performed during a generation.

2.2.1 Runtime Comparison

The following experiment illustrates the difference in processing speed of
the four ways of program execution depicted in Figure 2.2. In order to
guarantee a fair comparison between machine code GP and interpreting
GP, an interpreting routine has been added to an AIMGP system. This
routine interprets the machine code programs in C so that they produce
exactly the same results as without interpretation. Both interpreting and
non-interpreting runs of the system are accelerated by a second routine
that removes the noneffective code. Table 2.3 reports general settings of
system parameters for a polynomial regression task.
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Table 2.3. Parameter settings

Parameter Setting

Problem type polynomial regression

Number of examples 200

Number of generations 200

Population size 1,000

Maximum program length 256

Maximum initial length 25

Crossover rate 90%

Mutation rate 10%

Number of registers 6

Instruction set {+,−,×}
Constants {0,..,99}

Table 2.4 compares the average absolute runtime4 for the four differ-
ent configurations with respect to interpretation and intron elimination.
Without interpretation, programs are executed directly as machine code.
Ten runs have been performed for each configuration while using the same
set of 10 different random seeds. Runs behave exactly the same for all
configurations apart from their processing speed. The average length of
programs in the population exceeds 200 instructions by about generation
100. The intron rate converges to about 80% on average.

Table 2.4. Absolute runtime in seconds (rounded) averaged over 10 independent runs.

Runtime (sec.) No Interpretation (I0) Interpretation (I1)

No Intron Elimination (E0) 500 6250

Intron Elimination (E1) 250 1375

The resulting relative acceleration factors are listed in Table 2.5. If both
the direct execution of machine code and the elimination of noneffective
code are applied in combination, runs become about 25 times faster for
the problem considered under the system configuration above. Note that
the influence of intron elimination on the interpreting runs (factor 4.5) is
more than two times stronger than on the non-interpreting runs (factor
2). This reduces the advantage of machine code GP over interpreting
LGP from a factor of 12.5 to a factor of 5.5. Standard machine code GP
without intron elimination, instead, seems to be around 3 times faster
than linear GP including this extension.

4Absolute runtime is measured in seconds on a Sun SPARC Station 10.
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Table 2.5. Relative runtime for the four configurations of Table 2.4.

E0I0 : E0I1 1 : 12.5

E1I0 : E1I1 1 : 5.5

E0I0 : E1I0 1 : 2

E0I1 : E1I1 1 : 4.5

E0I0 : E1I1 1 : 2.75

E1I0 : E0I1 1 : 25

Clearly, the performance gain by intron elimination will depend on the
proportion of (structurally) noneffective instructions in programs. In con-
trast to the size of effective code, this is less influenced by the problem
definition than by variation operators and system configuration (see Chap-
ters 5 and 7).

2.2.2 Translation

From an application point of view the best (generalizing) program solu-
tion is the only relevant result of a GP run. The internal representation
(coding) of this program could be exported as is and an interpreter would
be required to guarantee that the program will behave in an application
environment exactly as it did in the GP system. In order to avoid this,
LGP exports programs as equivalent C functions (see Example 2.1 and

a)

C Program

Translation

Effective Program

Internal Representation

Translation

Execution

b)

Machine Code 

Internal Representation

Effective Program

Figure 2.3. Translation of internal representation into (a) C program and (b) machine
code.
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Figure 2.3). As has been explained in Section 2.1.2, single programming
concepts are transformed into C by translating internal programs into an
existing (imperative) programming language. This way, solutions may be
integrated directly into an application context (software) without addi-
tional overhead.

Such a translation has the additional benefit to allow more freedom on
the internal representation. The representation may be chosen (almost)
freely, e.g., in favor of better evolvability and better variability in GP.
Because normally just a few (best) individuals are exported during a run,
even complex transformations may not be time-critical.

The same advantage – higher flexibility – together with a higher process-
ing speed motivates a translation from the evolved LGP language into a
binary machine language (compilation) just before the fitness of a program
is evaluated (see Figure 2.3). This allows a more efficient evaluation of
programs, especially if noneffective code is removed prior to translation.
Note that the direct variation of machine code programs in AIMGP sys-
tems is less important for runtime. Instead, the speed advantage almost
exclusively results from a direct execution of machine code. The disad-
vantage of this technique is the higher compiler overhead that needs to be
taken into account.

2.3 Evolution of Programs

Algorithm 2.1 constitutes the kernel of our LGP system. In a steady-state
evolutionary algorithm like this, generations are not fixed, in contrast
to a generational EA. For the latter variant, the current generation is
identified with a population of parent programs whose offspring migrate
to a separate population pool. After the offspring pool is fully populated
it replaces the parent population and the next generation begins. In the
steady-state model there is no such centralized control of generations.
Instead, offspring replace existing individuals in the same population. It
is common practice to define generation equivalents in steady-state EAs
as regular intervals of fitness evaluations. Only new individuals have to
be evaluated if the fitness is saved with each individual in the population.
A generation (equivalent) is complete if the number of new individuals
equals the population size.

Algorithm 2.1 (LGP algorithm)

1. Initialize the population with random programs (see Section 2.3.1) and
calculate their fitness values.
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2. Randomly select 2 × nts individuals from the population without re-
placement.

3. Perform two fitness tournaments of size nts (see Section 2.3.2).

4. Make temporary copies of the two tournament winners.

5. Modify the two winners by one or more variation operators with certain
probabilities (see Section 2.3.4).

6. Evaluate the fitness of the two offspring.

7. If the current best-fit individual is replaced by one of the offspring
validate the new best program using unknown data.

8. Reproduce the two tournament winners within the population with
a certain probability or under a certain condition by replacing the
two tournament losers with the temporary copies of the winners (see
Section 2.3.3).

9. Repeat steps 2 to 8 until the maximum number of generations is
reached.

10. Test the program with minimum validation error.

11. Both the best program during training and the best program during
validation define the output of the algorithm.

Fitness of an individual program is computed by an error function on a
set of input-output examples (�ik, ok). These so-called fitness cases define
the problem that should be solved or approximated by a program. A
popular error function for approximation problems is the sum of squared
errors (SSE), i.e., the squared difference between the predicted output
gp(�ik) and the desired output ok summed over all n training examples. A
squared error function penalizes larger errors more heavily than smaller
errors. Equation 2.1 defines a related measure, the mean square error
(MSE).

MSE(gp) =
1
n

n∑
k=1

(gp(�ik) − ok)2 (2.1)

For classification tasks the classification error (CE) calculates the num-
ber of examples wrongly classified. Function class in Equation 2.2 hides
the classification method that maps the continuous program outputs to
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discrete class identifiers. While a better fitness means a smaller error the
best fitness is 0 in both cases.

CE(gp) =
n∑

k=1

{1 | class(gp(�ik)) �= ok} (2.2)

The generalization ability of individual solutions is observed during train-
ing by calculating a validation error of the current best program. The
training error function is applied to an unknown validation data set which
is sampled differently from the training data, but from the same data
space. Finally, among all the best individuals emerging over a run the
one with minimum validation error (point of best generalization) is tested
on an unknown test data set, once after training. Note that validation
of the best solutions follows a fitness gradient. Validating all individuals
during a GP run is not reasonable, since one is not interested in solutions
that perform well on the validation data but have a comparatively bad
fitness on the training data set.

Whether an individual is selected for variation or ruled out depends on
relative fitness comparisons during selection. In order to not loose infor-
mation, a copy of the individual with minimum validation error has to be
kept outside of the population. The individual of minimum training error
(best individual) does not need protection since it cannot be overwritten
as long as the training data is fixed during evolution.

Training data may be resampled every mth generation or even each time
before an individual is evaluated. On the one hand, resampling intro-
duces noise into the fitness function (dynamic fitness). This is argued to
improve the generalization performance compared to keeping the train-
ing examples constant over a run because it reduces overtraining, i.e., an
overspecialization of solutions to the training data. On the other hand,
resampling may be beneficial if the database that constitutes the prob-
lem to be solved is large. A relatively small subset size may be used for
training purposes while all data points would be exposed to the genetic
programs over time. As a result, not only the fitness evaluation of pro-
grams is accelerated but the evolutionary process may converge faster.
This technique is called stochastic sampling [9].

2.3.1 Initialization

The initial population of a genetic programming run is normally generated
randomly. In linear GP an upper bound for the initial program length has
to be defined. The lower bound may be equal to the absolute minimum
length of a program – one instruction. A program is created so that
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its length is chosen randomly from this predefined range with a uniform
probability.

There is a trade-off to be addressed when choosing upper and lower bounds
of program length: On the one hand, it is not recommended to initialize
exceedingly long programs, as will be demonstrated in Section 7.6. This
may reduce their variability significantly in the course of the evolutionary
process. Besides, the smaller the initial programs are, the more thorough
an exploration of the search space can be performed at the beginning of a
run. On the other hand, the average initial length of programs should not
be too small, because a sufficient diversity of the initial genetic material
is necessary, especially in smaller populations or if crossover dominates
variation.

2.3.2 Selection

Algorithm 2.1 applies tournament selection. With this selection method
individuals are selected randomly from the population to participate in a
tournament where they compete for the best fitness. Normally selection
happens without replacement, i.e., all individuals of a tournament must
be different. The tournament size nts determines the selection pressure
that is imposed on the population individuals. If a tournament is held
between two individuals (and if there is only one tournament used for
selecting the winner) this corresponds to the minimum selection pressure.
A lower pressure is possible with this selection scheme only by performing
m > 1 tournaments and choosing the worst among the m winners.

In standard LGP two tournaments happen in parallel to provide two par-
ent individuals for crossover. For comparison purposes, this is practiced
here also in cases where only mutation is applied (see Chapter 6). Be-
fore the tournament winners undergo variation, a copy of each winner
replaces the corresponding loser. This reproduction scheme constitutes a
steady-state EA.

Tournament selection, together with a steady-state evolutionary algo-
rithm, is well suited for parallelization by using isolated subpopulations
of individuals, called demes (see also Section 4.3.2). Tournaments may be
performed independently of each other and do not require global informa-
tion about the population, like a global fitness ranking (ranking selection)
or the average fitness (fitness proportional selection) [17] would do. Local
selection schemes are arguably better to preserve diversity than global
selection schemes. Moreover, individuals may take part in a tournament
several times or not at all during one steady-state generation. This al-
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lows evolution to progress with different speeds in different regions of the
population.

2.3.3 Reproduction

A full reproduction of winners guarantees that better solutions always
survive in a steady-state population. However, during every replacement
of individuals a certain amount of genetic material gets lost. When using
tournament selection this situation can be influenced by the reproduction
rate prr. By using prr < 1 the EA may forget better solutions to a cer-
tain degree. Both reproduction rate and selection pressure (tournament
size) have a direct influence on the convergence speed of the evolutionary
algorithm as well as on the loss of (structural and semantic) diversity.

The reproduction rate could also be allowed to exceed the standard setting
1 (prr > 1). An individual would then be reproduced more than once
within the population. As a result, both the convergence speed and the
loss of diversity will be accelerated. Obviously, too many replications of
individuals lead to an unwanted premature convergence and subsequent
stagnation of the evolutionary process. Note that more reproductions are
performed than new individuals are created.

Instead of, or in addition to, an explicit reproduction probability, implicit
conditions can be used to determine when reproduction shall take place
(see Section 10.5).

2.3.4 Variation

Genetic operators change the contents and the size of genetic programs
in a population. Figure 2.4 illustrates two-point linear crossover as it is
used in linear GP for recombining two genetic programs [9]. A segment of
random position and arbitrary length is selected in each of the two parents
and exchanged. In our implementation (see also Section 5.7.1) crossover
exchanges equally sized segments if one of the two children would exceed
the maximum length otherwise [21].

Crossover is the standard macro operator applied to vary the length of
linear genetic programs on the level of instructions. In other words, in-
structions are the smallest units to be changed. Inside instructions micro
mutations randomly replace either the instruction identifier, a register or a
constant (if existent) by equivalents from predefined sets or valid ranges.
In Chapter 5 and Chapter 6 we will introduce more advanced genetic
operators for the linear program representation.
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Offspring 1

Offspring 2

Parent 1

Parent 2

Figure 2.4. Crossover in linear GP. Continuous sequences of instructions are selected
and exchanged between parents.

In general, there are three different ways in which variation operators may
be selected and applied to a certain individual program before its fitness
is calculated:

� Only one variation is performed per individual.

� One variation operator is applied several times.

� More than one variation operator is applied.

The advantage of using only one genetic operation per individual is a lower
total variation strength. This allows artificial evolution to progress more
specifically and in smaller steps. By applying several genetic operations
concurrently, on the other hand, computation time is saved such that less
evaluations are necessary. For example, micro mutations are often applied
together with a macro operation.

Note that in all three cases, there is only one offspring created per parent
individual, i.e., only one offspring gets into the population and is evalu-
ated. However, similar to multiple reproduction of parents one may gen-
erate more than one offspring from a parent. Both options are, however,
not realized by Algorithm 2.1.



Chapter 3

CHARACTERISTICS OF THE LINEAR
REPRESENTATION

In the first instance linear genetic programming has been introduced for
the benefit of shorter execution time. Genetic programs written as binary
machine code do not have to pass through a time-consuming interpre-
tation step (see Section 2.2). In this chapter we investigate other, more
general features of the linear representation. One basic difference to a tree
representation is the emergence of unused code parts in linear genetic pro-
grams that are independent of program semantics. Another fundamental
difference is that the data flow in a linear genetic program has a directed
graph structure that is more general than a tree.

3.1 Effective Code and Noneffective Code

Introns in nature are subsequences of DNA residing within the region of
a gene and holding information that is not expressed in the phenotype of
an organism or, more precisely, that is not translated into a protein se-
quence.1 The existence of introns in eukaryotic genomes may be explained
in different ways:

(1) Because the information for a gene is often located on different exons,
i.e., gene parts that are expressed, introns may help to reduce the number
of destructive recombinations between chromosomes by simply reducing
the probability that recombination points will fall within an exon region

1The definition of introns is changing over time. In recent years, some non-intron sequences
have been found to not be translated into proteins either, in the course of alternative splicing,
a combinatorial mechanism to generate proteins. Even more recently, non-protein-coding but
expressed DNA has been found to play a key role in gene regulation. Here we only refer to the
early simple definition of introns.
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[136]. Thus, functionally complete protein segments encoded by specific
exons are more frequently mixed than interrupted during evolution.

(2) Perhaps even more important for understanding the evolution of higher
organisms is the realization that new code can be developed “silently”,
without exposing each intermediate variation step to fitness selection.

In genetic programs there may be segments of code that are either essential
or redundant for the program solution. Redundant code fragments are
often called introns2 like their natural counterpart. Actually, introns in
GP may play a similar role as introns in nature. First, introns reduce
the destructive influence of variations on the effective part of programs.
In doing so, they may protect the information holding code from being
separated and destroyed. Second, the existence of noneffective code allows
code variations to be neutral in terms of a fitness change. This protects
genetic manipulations from direct evolutionary pressure. In linear GP we
distinguish effective instructions from noneffective instructions:3

Definition 3.1 (effective/noneffective instruction)
An instruction of a linear genetic program is effective at its position iff
it influences the output of the program for at least one possible input
situation. A noneffective or intron instruction, respectively, is without
any influence on the calculation of the output for all possible inputs.

One noneffective instruction is regarded as the smallest unit. A non-
effective instruction may be removed from a program without affecting
its semantics – either independently or only in combination with other
noneffective instructions. In analogy to biology an intron in LGP may
be defined as any instruction or combination of instructions where this
is possible. A second, weaker intron definition postulates the program
behavior to be unchanged only for the fitness cases [92]:

Definition 3.2 (noneffective instruction 2)
An instruction of a linear genetic program is noneffective iff it does not
influence the program output for the fitness cases.

The condition in Definition 3.2 does not necessarily hold for unknown data
inputs. If the generalization performance of best individuals is checked
during training and some of these introns would be removed before the

2Even if intron code is redundant in a program, it might have been important for finding that
solution.
3Although the terms intron and noneffective code are used synonymously in the GP community,
we prefer the latter.
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validation error is calculated, the behavior of the program may not be the
same any more.

Definition 3.3 (effective/noneffective register)
A register is effective for a certain program position iff its manipulation
can affect the behavior, i.e., an output, of the program. Otherwise, the
register is noneffective at that position.

Effective instructions following Definition 3.1 necessarily manipulate ef-
fective registers (see Definition 3.3). But an operation can still be nonef-
fective even if its result is assigned to an effective register.

When using single conditional instructions as introduced in Section 2.1.3
a branch instruction is effective only if it directly precedes an effective
instruction. Otherwise it is noneffective. That is, a conditional instruction
is effective as a whole if this is true for its operation.

3.2 Structural Introns and Semantic Introns

The above considerations suggest an additional classification of introns in
linear GP. This is based on a special type of noneffective code that results
from the imperative structure of programs – not from program semantics.
Hence, two types of noneffective instructions may be discerned: structural
introns and semantic introns [21].

Definition 3.4 (structural intron)
Structural introns denote single noneffective instructions that emerge in a
linear program from manipulating noneffective registers.

Actually, the term structural intron refers to the functional structure
of linear genetic programs that constitutes a directed graph, as will be
demonstrated in Section 3.3. Structural introns belong to a part of the
graph that is not connected to the program output. That is, these in-
structions do not contribute to the effective data flow. Structural introns
do not exist in tree-based GP, because in a tree structure, by definition,
all program components are connected to the root. Thus, introns in tree
programs can only result from program semantics.

In linear GP semantic introns may be defined as follows:

Definition 3.5 (semantic intron)
A semantic intron is a noneffective instruction or a noneffective combina-
tion of instructions that manipulates effective register(s).
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In other words, a semantic intron is structurally effective by this definition,
otherwise it would be a structural intron. The state of effective registers
manipulated by a semantic intron is the same before and after the intron
has been executed – if we assume that operations do not induce side effects.
For instance, instruction r0 := r0 × 1 is a semantic intron if register r0 is
effective. While all structural introns are noneffective after Definition 3.1
and Definition 3.2, semantic introns may be noneffective after Definition
3.2 only. But note that not all semantic introns depend necessarily on
fitness cases. More examples of semantic introns will be given in Section
3.2.2.

Following Definitions 3.4 and 3.5 we distinguish structurally effective code
from semantically effective code. While the former may still contain se-
mantic introns the latter code is supposed to be intron-free. However,
even if all intron instructions can be removed from a program, it might
not have minimum size (see Section 3.2.4).

Regarding Definition 3.1 only, structural introns may also be designated as
neutral noneffective code and semantic introns as neutral effective code,
respectively. Such naming would conform to the distinction of neutral
noneffective variations and neutral effective variations, as will be defined
in Section 5.1.1. It has to be noted, however, that neutral code does not
only result from neutral variations (see Chapter 10). This produces confu-
sion. The different intron definitions will become clearer in the following
sections.

Whether a branch is a structural intron or a semantic intron depends
again on the status of the operation that directly follows. Semantic in-
trons include branch instructions, too, whose condition is always true,
at least for all fitness cases. In this case, all other branches are skipped
that follow directly in a sequence (nested branch, see Section 2.1.3). Like-
wise, an operation is not executed if the condition of a directly preceding
(nested) branch is always false. All such non-executed instructions are
special semantic introns (see also Section 3.2.2).

3.2.1 Detecting and Removing Structural Introns

In biology introns are removed from messengerRNA (mRNA) through
RNA splicing and editing. mRNA is a copy of DNA code and functions
as an intermediate information carrier on the way to protein biosynthesis
[136]. A biological reason for the removal of introns could be that genes
are more efficiently translated during protein biosynthesis in this way.
Without being in conflict with ancient information held in introns, this
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might have an advantage, presumably through decoupling of DNA size
from direct evolutionary pressure.

The imperative program structure in linear GP permits structurally non-
effective instructions to be identified efficiently. This, in turn, allows the
corresponding effective instructions to be extracted from a program dur-
ing runtime and to be copied to a temporary program buffer once before
the fitness of the program is calculated (see Figure 3.1). By only execut-
ing this effective program when testing fitness cases, evaluation can be
accelerated significantly. Thereby, the representation of individuals in the
population remains unchanged while valuable computation time for non-
effective code is saved. No potentially relevant genetic material is lost and
intron code may play its role during the evolutionary process. In analogy
to the elimination of introns in nature, the linear genetic code is inter-
preted more efficiently. Because of this analogy the term intron might be
more justified here than in tree-based GP where introns are necessarily
semantic and, thus, cannot be detected and removed as easily.

Population
Intron

Elimination
Fitness

Evaluation

 Effective Program

Individual

Figure 3.1. Intron elimination in LGP. Only effective code (black) is executed.

Algorithm 3.1 detects all structural introns in a linear genetic program
which does not employ loops (backward jumps) or jumps over more than
one instruction [21]. More generally, such an elimination of dead code
represents a form of code optimization that is applied, for instance, during
compilation [1]. The algorithm includes a simple dependence analysis
which identifies all instructions influencing the final program output. All
depending effective instructions are marked in a program by using one
bit of the instruction coding (see Section 2.1.1) as an effectiveness flag.
Copying all marked instructions into a buffer results in the corresponding
effective program. In the sample program from Section 2.1 all instructions
marked with // are structural introns provided that the program output
is stored in register r[0] at the end of execution.
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Algorithm 3.1 (detection of structural introns)

1. Let set Reff always contain all registers that are effective at the current
program position. Reff := { r | r is output register }.
Start at the last program instruction and move backwards.

2. Mark the next preceding operation in program with destination register
rdest ∈ Reff . If such an instruction is not found then → 5.

3. If the operation directly follows a branch or a sequence of branches
then mark these instructions too. Otherwise remove rdest from Reff .

4. Insert each source (operand) register rop of newly marked instructions
in Reff if not already contained. → 2.

5. Stop. All unmarked instructions are introns.

For a program of length n instructions the algorithm needs linear calcula-
tion time O(n). Indeed, detecting and removing the structurally noneffec-
tive code from a program only requires about the same time as calculating
one fitness case. The more fitness cases are processed by the resulting ef-
fective program the more computational overhead will be saved. A good
estimate of the overall acceleration factor in runtime is

αacc =
1

1 − pintron
(3.1)

where pintron is the average percentage of intron code in a genetic program
and 1 − pintron the respective percentage of effective code.

By omitting the execution of noneffective instructions during program in-
terpretation a large amount of computation can be saved. The removal of
structural introns may, however, be relevant only if a sufficient proportion
of this noneffective code occurs with the applied variation operators (see
Chapter 5). System parameters like the maximum program length influ-
ence this proportion because effective length may grow even after absolute
length has reached a maximum. Moreover, the creation of structural in-
trons is facilitated if a higher number of registers is provided. Should only
one register be available, this type of code would not occur at all. We
will demonstrate in Section 7.1 that prediction performance suffers if the
number of registers is chosen either too small or too large.

3.2.2 Avoiding Semantic Introns

After structural introns have been identified and removed completely by
Algorithm 3.1, semantic introns may still be present in the remaining
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program code. In general, a detection of semantic introns is much more
difficult and may be done only incompletely (see Section 3.2.4). As an
inherent part of the program structure, the structurally noneffective code
does not directly depend on the applied set of instructions. This type of
noneffective code may be implemented easily by linear genetic program-
ming, even in great quantities. Structural introns reduce much of the
pressure that would otherwise lie on genetic programs to develop seman-
tic introns. This would mostly happen to reduce the variation step size in
semantically effective code (see Section 5.9.1 and Chapter 10). Structural
introns thus allow effective solutions to be more compact in size.

The proportion of semantic introns may be further reduced by controlling
the formation of this code explicitly. Although these introns cannot be
completely avoided in genetic programming some rules can be formulated
that help to avoid at least simple instances of semantic introns, without
significantly restricting the freedom of variation or the expressiveness of
the function set. The harder it becomes for the system to develop non-
effective code that depends on program semantics, the more this code
should be ruled out by structural introns.

The potential of linear GP to develop semantic introns strongly depends
on the set of instruction operators provided and the set of constants. To
restrict the rate of semantic introns and to keep the (structurally) effec-
tive size of programs small, both sets should be chosen with a minimum
tendency for creating semantic introns. Below different types of seman-
tic introns possible with instruction set {+,−,×, /, xy, if >, if ≤} (see
Table 2.1) are given by example, together with some rules for how each
type may be avoided. The classification into categories is not meant to be
totally disjoint. Some examples may be borderline cases and fit in more
than one class.

All semantic introns denote noneffective code for all possible input sit-
uations (following intron Definition 3.1). We do not regard instructions
as introns that are noneffective for certain input ranges or fitness cases
only (see Definition 3.2). In the following, register r0 is supposed to be
effective (otherwise introns would be structural).

Examples of semantic introns of type 1 are:

1. (a) r0 := r0 + 0

(b) r0 := r0 × 1

(c) r0 := r0
1
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(d) r2 := r0 + r0

r1 := r2 − r0

r0 := r1 + 0

Such introns become less likely if the particular constants 0 and 1 are not
explicitly provided to act as neutral elements in operations. It is especially
easy and effective to do without constant 0, since it is not really useful
for calculation but has a high potential for creating semantic introns.

Semantic introns of type 2 are instructions preceding the following in-
structions and influencing only the content of effective register ri:

2. (a) r0 := ri × 0

(b) r0 := ri
0

(c) r1 := r0 − r0

r0 := ri × r1

This intron type can include many noneffective instructions. Note that
even if value 0 is excluded from the set of constants it may still be cal-
culated and assigned to a variable register, independent from the register
contents (see context example 2c). However, the more complex such in-
tron constructs become the more context-dependent they are and the more
likely they will be destroyed during variation.

Introns of type 3 result from registers like r0 whose contents become con-
stant by calculation, i.e., do no longer depend on other register variables:

3. (a) r0 := ri − ri

(b) r0 := ri/ri

(c) r1 := ri + c
r0 := r1 − ri

Again, all preceding instructions are semantic introns that manipulate
register ri exclusively. The reader may recall that instructions with only
constant operands are not possible (see Section 2.1.1). One operand is
always variable. To make the emergence of type 3 introns more difficult
subtraction and division of identical registers might be forbidden explic-
itly. An example of a type 4 intron is shown next:

4. r1 := r0 + 1
r0 := r1 − 1
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It includes all combinations of instructions that may be symbolically
simplified without requiring any (semantically equivalent) replacement
through other instructions (see Section 3.2.4). The same is true for type
1 introns that comprise a single instruction only. Such introns are dif-
ficult to avoid in general, especially if many redundant calculations are
involved. It may be questioned, however, if complex context-dependent
introns occur frequently and survive during program evolution.

By closer inspection one can see that register r1 has to be noneffective at
the position of intron example 4 in a program. Otherwise, these instruc-
tions might not be removed without changing the (effective) program. In
general, all registers that are manipulated in semantic introns must be ei-
ther (structurally) noneffective or their original contents before the intron
is restored after the last instruction of the intron has been executed.

Typically, the undefined range of a protected operator is exploited for the
induction of type 5 introns:

5. (a) r0 := ri/0
(b) r1 := r0 − r0

r0 := ri/r1

This variant can be avoided by penalty as described in Section 2.1.2.
Type 6 is a special case of semantic intron:

6. (a) if (ri > ri)
r0 := rj + c

(b) r2 := ri + ri

r1 := r2 − ri

if (r1 > ri)
r0 := rj + c

(c) r0 := ri + 2
r1 := r0 − ri

if (r1 ≤ 1)
r0 := rj + rk

(d) if (ri > 2)
if (ri ≤ 1)
r0 := rj + rk

The operation is not executed at all because the branching condition can-
not be met. As a result, all preceding instructions, whose effectiveness
depends only on the skipped instruction become noneffective, too. Ex-
ample 6a cannot occur if identical registers cannot be compared. More
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context-dependent conditions (6b) are not affected by such a restriction,
but are created with less likelihood. Conditions like in example 6c that
are unsatisfiable for all possible register values emerge from comparison
of constant values even if a direct comparison of two constant values is
avoided. A conjunction of contradicting conditions (6d) emerges less likely
if only one type of comparison (> or <) is allowed to the system. This will
not significantly restrict the expressiveness of the programming language.
Alternatively, sequences of branches might be explicitly forbidden.

Type 7 represents the opposite case to type 6. That is, a conditional
operation is always executed because the condition is always true:

7. (a) if (ri ≤ ri)
r0 := rj + c

(b) r1 := ri + 2
r0 := r1 − ri

if (r0 > 1)
r0 := rj + rk

Here the branch instruction itself is a sematic intron as well as all preced-
ing instructions that are effective only in the false case.

8. if (r1 > 1)
if (r1 > 1)
r0 := rj + rk

Finally, redundant branch instructions that may occur in nested branches
constitute introns of type 8.

3.2.3 Detecting Semantic Introns

The specific measures proposed in the previous section reduce the prob-
ability that semantically noneffective code occurs in linear genetic pro-
grams. It is generally not necessary and not cost effective to apply expen-
sive algorithms that detect and remove semantic introns during runtime.
Usually the evolutionary process is already accelerated significantly by
eliminating the larger number of structural introns (see Algorithm 3.1).

Nevertheless, a removal of semantic introns makes sense for a better un-
derstanding and interpretation of a certain program solution and, thus,
to gain information about the application domain. Another motivation
to further reduce the (structurally) effective size after evolution may be a
higher efficiency in time-critical application domains.
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Algorithms that detect certain types of (structural or semantic) noneffec-
tive code as specified by Definition 3.1 should be deterministic. Probabilis-
tic algorithms that require the execution of a program necessarily depend
on a representative set of input-output examples. Such algorithms may
identify instructions whose intron status depends on certain input situa-
tions (see Definition 3.2). Since normally not all possible inputs can be
verified for a problem, such intron instructions may become effective when
being confronted with unknown data.

The following probabilistic algorithm (similar to the one documented in
[9]) detects semantic introns. All structural introns, instead, are detected
as a side effect even if much more inefficiently than by Algorithm 3.1.
Hence, computation time may be saved if the program is already free
from structural introns.

Algorithm 3.2 (elimination of semantic introns)

1. Calculate the fitness Fref of the program on a set of m data exam-
ples (fitness cases) as a reference value. Start at the first program
instruction at position i := 1.

2. Delete the instruction at the current program position i.

3. Evaluate the program again.

4. If its fitness F = Fref then the deleted instruction is an intron.
Otherwise, reinsert the instruction at position i.

5. Move to the next instruction at position i := i + 1.

6. Stop, if the end of program has been reached. Otherwise → 2.

Algorithm 3.2 needs calculation time O(m ·n2) because of n fitness evalu-
ations, m + 1 program executions per fitness evaluation, and n (effective)
program instructions at maximum. This is too inefficient for removing
introns during runtime. The higher computational costs would hardly be
paid by the savings obtained during the fitness evaluation.

Unfortunately, Algorithm 3.2 will not recognize semantic introns that are
more complex than one instruction (see Section 3.2.2). One possibility to
find all semantic introns in a linear genetic program for a certain set of
fitness cases (following Definition 3.2) is to repeat the algorithm for all
k-party combinations of arbitrary program instructions with k = 1, 2, .., n.
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3.2.4 Symbolic Simplification

Introns have been defined in Section 3.1 as single instructions or com-
binations of instructions that may be removed without replacement and
without affecting program semantics. But even if a linear genetic pro-
gram is completely free from semantic and structural introns, the size
of the remaining (semantically) effective code is not necessarily minimal.
The following example (type 9) is not an intron, but may be referred to
as a mathematically or semantically equivalent extension. It represents
all formulations of a subprogram that are more complicated than nec-
essary. Such combinations of instructions cannot be removed, but may
be replaced by less complex, semantically equivalent code (semantically
equivalent replacement).

9. r0 := r0 + 1
r0 := r0 + 1
⇔
r0 := r0 + 2

A (structurally effective) program can be transformed into a functional
tree expression by a successive replacement of variables (see Section 3.3.4)
provided that program operators do not induce side effects. During such
a transformation process the expression can be simplified successively by
applying rules of symbolic calculation. In doing so, semantic intron in-
structions by Definition 3.1 are removed deterministically. The proba-
bilistic Algorithm 3.2, instead, removes noneffective code by Definition
3.2 only and does not resolve mathematically equivalent extensions.

In general, detecting absolutely all noneffective code and semantically
equivalent extensions is an unsolvable problem. Reducing a program to
an equivalent of minimum size corresponds to the more general problem
of whether two programs are equivalent or not. This program equivalence
problem is in general undecidable because it may be reduced to the un-
decidable halting problem [36, 1]. However, in GP we normally regard
finite programs. If no loops or only loops with a finite number of it-
erations are permitted (see Section 2.1.5), genetic programs will always
terminate. Then we may assume that at least theoretically all (semantic)
introns can be detected. Unfortunately, the reduction of an expression
to an equivalent expression of minimum size (unique except for isomor-
phism) is already NP-complete [1]. This is true because the NP-complete
satisfiability problem may be reduced to this simplification problem. A
general Boolean expression will be unsatisfiable if and only if it simplifies
to false.
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In the following let the terms intron or noneffective instruction always
denote a structural intron unless stated otherwise. Accordingly, effective
programs still include semantic introns. As we will see below, the mod-
ification of an instruction may change the effectiveness status of other
preceding instructions in a linear program – comprising both deactiva-
tions and reactivations. Therefore, the terms active and inactive code will
be used as synonyms for effective and noneffective code, respectively.

3.3 Graph Interpretation

The imperative representation of a linear program can be transformed into
an equivalent functional representation as a graph by means of Algorithm
3.3. In [11] we showed a simpler version of the algorithm applicable to
effective programs. The directed structure of the resulting graph better
reflects functional dependencies and data flow in linear genetic programs
than the simple succession of instructions. The graph is acyclic if loops
do not occur in the imperative program. Special cases of programming
concepts like loops and branches shall be excluded from the following con-
siderations for simplicity. Instead, we concentrate on the transformation
of linear genetic programs consisting of sequences of simple operations
into directed acyclic graphs (DAGs). Again, it has to be assumed that
program operators/functions do not induce side effects in the problem
environment. Otherwise, the linear execution order of instructions would
be less flexible than is required here.

Algorithm 3.3 (transformation of an LGP program into a DAG)

1. Start with the last instruction in program at position i := n (n =
program length). Let set S := ∅ always contain all variable sinks of
the current graph.

2. If destination register rdest �∈ S then create a new start node (a new
contiguous graph component) with label rdest and S := S ∪ {rdest}.

3. Go to the (variable) sink node in the graph with label rdest.

4. Assign the operator of instruction i to this node.

5. Repeat steps 6 to 8 for each operand register rop of instruction i.

6. If there is no (variable or constant) sink node with label rop then create
a new node with that label.

7. Connect nodes rdest and rop by a directed edge.
(rdest becomes inner node and rop becomes sink node.)
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8. If not all operations are commutative then label this edge with k if rop

is the kth operand.

9. Replace rdest in S by all non-constant operand registers rop of instruc-
tion i if not already contained.

10. If i > 1 then go to instruction i := i − 1 in program and → 2.

11. Stop. Delete all register labels from inner nodes.

The number of imperative instructions corresponds exactly to the number
of inner nodes in the program graph resulting from Algorithm 3.3. Each
inner node represents an operator and has as many outgoing edges as
there are operands in the corresponding imperative instruction, i.e., one
or two (see Section 2.1). Thus, each program instruction is interpreted as
a small subtree of depth one.

Sink nodes, i.e., nodes without any outgoing edges, are labeled with reg-
ister identifiers or constants. The number of these terminals is restricted
by the total number of (different) registers and constants in the terminal
set. This is different in a tree representation where a terminal may occur
multiple times because each node is referenced only once, by definition.

Only sink nodes that represent a (variable) register are replaced regularly
by operator nodes in the course of the algorithm. These are the only
points at which the graph may grow. Since loops are not considered,
the only successors of such sink nodes may become other existing sink
nodes or new nodes. At the end of the transformation process these sinks
represent the input variables of the program. Note that the data flow in
such functional programs runs in the opposite direction in which the edges
point.

Sink nodes that represent a constant value are only created once during
the transformation process and may be pointed to from every program
position. The same is true for constant inputs.

A DAG that results from applying Algorithm 3.3 may be composed of
several contiguous components. Each of these subgraphs has only one
start node from where all its other nodes are reached by at least one
(directed) path. Start nodes have indegree 0. There may be as many
start nodes (contiguous components) in the DAG as there are instructions
in the imperative program. The last instruction in the program that
manipulates an output register corresponds to a start node that initiates
an effective component. If there is only one output register defined, exactly
one graph component is effective. The rest of the graph is noneffective,
i.e., corresponds to noneffective instructions (structural introns).
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The different contiguous components of a DAG may either be disconnected
or may overlap in parts by forming a weakly contiguous component. We
state that in the latter case all operator nodes are connected (disregarding
the direction of edges) but that they may not be reached from the same
start node (on a directed path).

Note that noneffective components are not necessarily disconnected from
an effective component. Graph edges may point from a noneffective (oper-
ator) node to an effective (operator) node, but not the other way around.
Thus, noneffective components cannot influence the program output be-
cause the data flow in the effective component (effective data flow) is
directed from sinks to the (effective) start node. Also note that all com-
ponents (including disconnected ones) still share the same set of sinks in
this graph representation.

In the following we assume that the linear program is fully effective in
terms of Definition 3.4 and that only one output register is defined. Such a
program is translated into a DAG that constitutes only a single contiguous
component. The start node may also be denoted as the root of the DAG.

After each iteration of Algorithm 3.3 all non-constant sink nodes corre-
spond exactly to the effective registers at the current program position.
In particular, set S is equal to set Reff in Algorithm 3.1. Because the
number of effective registers is bound by the total number of registers, the
number of variable sink nodes is bound as well. This number determines
the width of program graph. For problem configurations with a moderate
number of inputs and registers the program graph is supposed to grow in
depth rather than in width. The depth is restricted by the length of the
imperative program because each imperative instruction corresponds to
exactly one inner node in the graph. A narrow but deep graph structure
may be referred to as “linear”, just like its imperative equivalent.

The actual width of a program graph indicates the number of parallel
calculation paths in a linear genetic program. It can be approximated
by the maximum or the average number of registers that are effective at
a program position (see also Section 3.4). Recall that the performance
of linear GP strongly depends on a sufficient number of registers. The
less registers available, the more conflicts may occur by overwriting of
information during calculations. The more registers are provided, instead,
the more local sets of registers may be used for calculating independent
program paths.

It follows from the above discussion that the runtime of Algorithm 3.3 is
O(k ·n) where n is the number of effective instructions and k is the number
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of registers. If the total number of (input) registers is small, runtime is
approximately linear in n.

The linear program in Example 3.1 corresponds exactly to the DAG in
Figure 3.2 after applying Algorithm 3.3.
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Variable Sinks

Constant Sinks

Figure 3.2. Functional equivalent to the effective imperative program in Example 3.1.
Operator nodes are labeled with the destination registers of the corresponding instruc-
tions (see Algorithm 3.3). Output register a marks the start node. (Outgoing edges
are not labeled because the order of operands is arbitrary here.)

Both the imperative representation and the functional representation con-
sist of structurally effective code here that is free from unused instructions
or unvisited graph components, respectively. This argument holds if we
assume that the output of the imperative program is stored in register
a at the end of execution. In Example 3.1 only two of the three possi-
ble inputs are used. At the beginning of program execution these inputs
are held in registers a and c. Used program inputs designate all register
operands that are directly read before being overwritten. In the corre-
sponding graph representation used inputs denote sink nodes (terminals).
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b := c ∧ 1
c := ¬ a
a := c ∨ b
c := b ∧ b
b := c ∨ 1 (x)
a := a ∧ c (x)
c := a ∧ b
b := a ∨ c
a := b ∨ c

Example 3.1. Effective imperative program using Boolean operator set {∧,∨,¬}. Out-
put and (used) input registers of the program are printed in bold.

3.3.1 Variation Effects

In linear GP already small mutations of the imperative representation
resulting in the exchange of a register may have a large effect on the func-
tional program structure and on data flow. Even if the absolute program
structure is altered only slightly the effective program may change dra-
matically. Many instructions preceding the mutated instruction may be
deactivated or reactivated. These minimum mutations are possible due to
weaker constraints of the functional structure and due to the existence of
non-contiguous graph components in linear programs. In tree GP, muta-
tions cannot redirect single edges without loosing the underlying subtree.
The number of child nodes (operands) is usually not variable.

b := c ∧ 1
c := ¬ a (i)
a := c ∨ b (i)
c := b ∧ b
b := c ∨ 1
a := b∧ c
c := a ∧ b
b := a ∨ c
a := b ∨ c

Example 3.2. Linear program from Example 3.1 after register mutation. Operand
register a has been exchanged by register b in the 6th line. Instructions marked with
(i) are structural introns.

Example 3.2 demonstrates the effect of a register mutation on the pro-
gram from Example 3.1. In particular, the first operand register a has
been exchanged by register b in instruction 6. Subsequently two former
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effective instructions – marked with (i) – are deactivated, i.e., are identi-
fied as structural introns now by Algorithm 3.1. Applying Algorithm 3.3
to this program results in the modified graph of Figure 3.3 which shows
a noneffective (and weakly connected) component.
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Figure 3.3. Graph interpretation of example program 3.2. Graph is effective except
for the dotted component.

In general, by changing an operand register on the imperative program
level a single edge is redirected in the corresponding graph. The exchange
of a destination register, on the other hand, may result in more redirections
of edges.

3.3.2 Interpretation of Branches

Throughout this book we restrict ourselves to the simple branching con-
cept of Section 2.1.3 which only considers single conditional operations.
These have a minimal effect on the imperative control flow but may signifi-
cantly change the data flow in a genetic program. Conditional instructions
have a high expressive power because leaving out or executing a single in-
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struction can deactivate much of the preceding effective code or reactivate
preceding noneffective instructions in turn. The more registers are avail-
able the more likely instructions operate on different sets of registers and
the less likely the different data flows will intersect.

A single branch instruction is interpreted as an if-else node in a func-
tional representation with a maximum of four successor nodes: one or
two successors for the condition plus one successor each for its true or
false outcome. In the true case the conditioned operation is executed
and overwrites a certain register contents. In the false case the previous
content of this register remains the current one and the corresponding
calculation is connected to the following data flow.

a := c ∧ 1
b := c ∨ 0
if (b)
a := b ∨ c

Example 3.3. Conditional branch.

All instructions in Example 3.3 constitute one branching node plus context
nodes as depicted in Figure 3.4. We assume that register a and, thus, all
instructions are effective. If condition b = 1 is fulfilled in program line 3,
the value of register a is calculated in the subsequent line. Otherwise, the
value of a is not changed from the first line.

a a

a

b

c

1 0

0 1

if

Figure 3.4. Functional equivalent to the conditional branch in Example 3.3. Edge
followed in true (false) case is labeled with 1 (0).

Conditional jumps over single instructions in linear GP are at least as
powerful for the modification of data flow as branch nodes in tree-based
GP. In both instances only one point in data flow is affected. A conditional
jump over more than one instruction, by comparison, would be interpreted
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as multiple branching nodes with identical condition. Accordingly, sev-
eral branching points (program paths) are affected simultaneously on the
functional level.

Conditional segments seem to be more powerful than conditional instruc-
tions, but they suffer from serious drawbacks. First, changing multiple
branching nodes simultaneously will be more difficult to handle by evo-
lution. Especially if jumps over branches into other conditional segments
are allowed in the programs, the control flow in linear programs becomes
somewhat chaotic. Second, larger jumps will induce larger variation steps
in case the branching condition is modified or if the branch instruction is
removed altogether. Whole branching blocks may suddenly be executed
for most inputs. This makes both a stepwise improvement of solutions
and a reduction of variation step size more difficult as will be discussed in
Chapter 5. Third, conditional jumps over more than one instruction have
a high potential for creating semantic introns and tend to produce larger
structurally effective programs. On the strength of these arguments we
may assume that the use of single conditional instructions provides enough
freedom of expression for GP solutions.

3.3.3 Evaluation Order

The calculation proceeds in imperative programs by a sequence of transi-
tions between different states of registers. While assignments to memory
variables are an implicit part of imperative programs, in a pure functional
program only values exist. Nevertheless, assignments – to a temporary
stack – are needed during the interpretation of programs.

If a functional genetic program is executed the evaluation order of nodes
depends on the way the graph is traversed. This path is not unique
because the successor nodes of an inner node may be visited in arbitrary
order – if we again exclude functions with side effects. The evaluation
of nodes in a (contiguous) DAG may be performed as in trees in postfix
order or prefix order. If the subgraphs of all outgoing edges have been
processed, i.e., if all operand values are calculated, the result of a node
can be computed. Because subprograms may be used more than once in
a graph – in contrast to a tree – the result of evaluation should be saved
in each node in order to not evaluate subgraphs twice. The final program
result is stored at the root, the only node without incoming edges.

In an imperative genetic program the evaluation order is determined by
the linear sequence of instructions. By using advanced programming con-
cepts like loops or conditional branches, the execution order of instructions
(control flow) may differ from the linear structural order. The instruction
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order of a program may be varied partly without leading to different be-
havior. This can happen for both effective and noneffective instructions.
For instance, the order of the two effective instructions marked with (x)
in Example 3.1 may be inverted, without altering the data flow or the
output of the program. In fact, a functional transformation of the modi-
fied program will result in exactly the same graph, shown in Figure 3.2.
Any reordering of instructions that preserves the dependencies in a pro-
gram and, therefore, does not change the execution order of depending
instructions is equivalent.

While the imperative structure arranges all instructions in a certain order,
such an order is not defined in a functional representation which renders
the latter less variable. As a result, only the transformation of a linear
program into a graph is unique (except for isomorphism), but not the
reverse transformation.

The imperative structure of programs is more variable based on a second
reason: Internal register identifiers, used temporarily during calculation,
may be replaced by other identifiers without changing program behavior.

Only the structural order of operands and the number of operands have
to be respected in the imperative representation which is the same as in
the functional representation.

3.3.4 Tree Interpretation

An effective linear program can be transformed into a functional expres-
sion by a successive replacement of register variables starting with the last
effective instruction. The result of this instruction is always assigned to
an output register. If there is more than one program output defined, a
tree expression will need to be created for each output register.

In order to transform the noneffective imperative code the whole process
has to be restarted from the last non-processed instruction in the program
until all instructions have been processed. Except for the last instruction,
instructions may have to be processed more than once. Because each
component of the resulting functional program appears as a separate tree
(expression), the whole linear genetic program is represented as a forest.

These tree programs normally contain many identical subtrees. The
deeper a tree node is located the more frequently its corresponding subtree
occurs.

The size of a tree grows exponentially with the program length n: Let
there be only 1 register and only operations with 2 register operands in
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the imperative program.4 Then the corresponding tree representation is
perfectly balanced and contains 2n − 1 operator nodes and 2n (identical)
terminal nodes. The corresponding effective graph, by comparison, has
only as many nodes as there are effective instructions (n) plus 1 terminal
node.

On the one hand, this calculation example demonstrates the high expres-
sive power of linear genetic programs. On the other hand, graph solutions
are more compact in size than tree solutions because subgraphs can be
reused several times. The reuse of register content is also the reason why
ADFs are less important in linear GP than in tree-based GP [94].

However, we cannot conclude automatically that linear GP is more power-
ful than tree-based GP only because the constraints of the graph structure
are weaker. The design of appropriate genetic operators is a very impor-
tant aspect to be added to the expressiveness of a representation (see
Chapters 5 and 6).

3.4 Analysis of Program Structure

In this section algorithms are described that extract information about
the specific structure of a linear genetic program. All algorithms operate
directly on the imperative representation which also is a representation for
special program graphs, as demonstrated in the previous section. Three
different features are analyzed that all refer to the effective part of a
program.

b := c ∧ 1
c := ¬ a
a := c ∨ b
c := b∧ b
b := c ∨ 1
a := a ∧ c
c := a ∧ b
if (b)
b := a ∨ c
a := b∨ c

Example 3.4. Linear program from Example 3.1 with branch. All dependencies of reg-
ister b are bold printed. The dependence degree is 3 for the 1st and the 5th instruction
from the top and 1 for the second last instruction.

4Then all instructions are necessarily effective.
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First, there is the actual number of effective registers at an effective or
absolute program position. This information is provided by means of Al-
gorithm 3.1. If set Reff (i) holds all registers that are effective at a position

i then 1
n+1

n∑
i=0

Reff (i) denotes the average number of effective registers in

a program of n instructions (and n+1 intermediate positions). This value
corresponds approximately to the average width of the (effective) graph
equivalent to the instruction sequence.

In a tree program each node is reached via a unique path from the root,
i.e., each node has indegree 1 except for the root (indegree 0). In a
graph-structured program, instead, many program paths may lead to the
same node. In principle, the indegree of a node is restricted only by the
total number of nodes n times the maximum outdegree m of a node.
The narrower a graph develops the more program paths lead through a
particular operator node.

Definition 3.6 (degree of effectiveness/dependence)
The degree of effectiveness or dependence of an effective operation denotes
the number of operand registers in (succeeding) instructions that directly
use its result. Let the dependence degree of a branch instruction be iden-
tically equal to the dependence degree of its conditioned operation.

Algorithm 3.4 calculates the degree of effectiveness in a (structurally) ef-
fective program (see Definition 3.6). Each of the deff (i) operands guaran-
tees that operation i is (structurally) effective. In other words, an operand
register guarantees the effectiveness of the next preceding assignment to
this register that is not conditional and of all conditional assignments to
this register that lie in between (see Example 3.4). On the functional level
the effectiveness degree corresponds to the number of edges that go into
an instruction node, i.e., the connectivity degree or, more precisely, the
indegree of the node.

Algorithm 3.4 (degree of effectiveness/dependence)

1. Assume that all n instructions of a program are effective after Defini-
tion 3.4. Start at the last instruction in program at position i := n
and move backwards. Let deff (i) denote the degree of effectiveness of
an instruction at position i. deff (i) := 0 for i = 1, .., n.

2. If instruction i is a branch then deff (i) := deff (i + 1) and → 7.

3. j := i.

4. If j < n then go to instruction j := j + 1. Otherwise → 7.
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5. If destination register rdest(i) of instruction i equals m operand regis-
ters rop(j) in instruction j then deff (i) := deff (i) + m.

6. If neither instruction j nor j − 1 are branches and rdest(i) = rdest(j)
then → 7. Otherwise → 4.

7. If i > 1 then go to instruction i := i − 1 and → 2.

8. Stop. The average effectiveness degree of program instructions is de-

fined as Deff := 1
n

n∑
i=1

deff (i).

The runtime of Algorithm 3.4 is bound by O(n2) with n being the effec-
tive program length. In the worst case scenario no instruction depends
on any other. On average, however, runtime can be expected to be much
shorter since usually a register will be used several times (temporarily) as
a destination register or operand register, especially if only a few registers
are available. In the best case each instruction only depends on the in-
struction that directly follows while computational costs are linear in n.
This happens, for instance, if only one program register is available. If
Algorithm 3.4 is applied to determine the effectiveness degree of a single
instruction, it requires computation time O(n).

Finally, Algorithm 3.5 calculates the average effective dependence distance
in a program (see Definition 3.7). On the one hand, this quantity gives
information about the relative position of effective instructions depending
on each other. Since loops are not considered, an instruction necessarily
follows the instructions in a program whose result it uses.

Definition 3.7 (effective dependence distance)
The effective dependence distance denotes the relative distance (in effective
instructions) of an effective instruction to the first succeeding instruction
that depends on it.

On the other hand, this measure indicates how similar the position of an
instruction in an imperative program is to the position of its correspond-
ing node in the functional graph. Two instruction nodes depending on
each other are always directly connected in the functional graph. The
closer these instructions are in the imperative code, on average, the more
similar are the relative positions of instructions and nodes. It follows
from Algorithm 3.3 that the last instruction of an effective linear program
forms the root of its equivalent directed graph. Theoretically, however,
it is possible that single instructions are located high up in the effective
program while their corresponding node is close to the graph root.
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Algorithm 3.5 (effective dependence distance)

1. Assume that all n instructions of a program are effective after Defini-
tion 3.4. Start at the first non-branch instruction at a position i. Let
δeff (i) denote the effective dependence distance between instruction i
and the next instructions depending on it. δeff (i) := 0 for i = 1, .., n.

2. j := i.

3. δeff (i) := δeff (i) + 1.

4. If j < n then go to instruction j := j + 1. Otherwise → 6.

5. If the destination register of instruction i equals an operand register
in instruction j then → 6. Otherwise → 3.

6. Go to the next succeeding instruction i := i + k (k ≥ 1) that is not a
branch.
If this does not exist then → 7. Otherwise → 2.

7. Stop. The average distance of two depending instructions is Δeff :=
1
n

n∑
i=1

δeff (i).

Algorithm 3.5 resembles Algorithm 3.4 in its basic structure and in run-
time.

The effective dependence distance is not only influenced by the instruction
order but also by the number and the usage of registers. The minimum
distance of two depending instructions is one which will always be the case
if only one register is used. In this case, the functional graph equivalent
is reduced to a linear list of operator nodes, each connected by one or
two edges. The more registers provided the more registers that may be
effective and the wider the functional graph that may develop. Wider
and longer graphs require a longer imperative representation. But only
for wider graphs the average dependence distance increases because it is
less likely that two depending instructions will occur one after the other
in the imperative program. On the other hand, the more complex the
register dependencies are, i.e., the higher their dependence degree is, the
less variable the order of effective instruction becomes. This may decrease
the effective dependence distance.
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3.5 Graph Evolution

Because the imperative representation can be interpreted as a special
graph representation, linear GP is reducible to the evolution of program
graphs. What may be asked in this context is whether a direct evolution
of a (less constrained) DAG representation may be more advantageous
than evolution on the linear structure. In the imperative representation
the (register) dependence of two instructions is influenced by both their
position in the program and the dependencies of the instructions that lie
in between.

We have seen above that the mutation of a single operand register may
reactivate or deactivate other preceding instructions. Former effective
(active) instructions become noneffective (inactive) if no other dependence
to an effective instruction exists than the one that has been canceled.
These deactivated instructions form a single contiguous graph component
of the DAG that is disconnected from the effective component because
the only existing connection has been removed.

If variations would happen directly on program graphs the degree of
freedom would be higher for connecting nodes. If single edges may be
redirected without restrictions on a functional level, the corresponding
changes on the imperative code level may comprise much more complex
transformations than exchanging a single register identifier.

The imperative representation defines a linear evaluation order on the ef-
fective and the noneffective instructions. This order does not exist in the
functional representation where the evaluation order is less constrained
and only determined by the connections of nodes. The imperative order
determines and restricts the possible functional connections. A connection
to the destination register of any preceding instruction is not possible, at
least not by exchanging just a single register operand. Because registers
are used multiple times in a program, only the next preceding assignment
to a certain register may be reached in this way. The more registers that
are provided, however, the less a restriction of variability this constitutes.
In principle, all transformations are possible in an imperative represen-
tation, but it might require more or larger variation steps to achieve the
same result.

The higher variability of a graph representation, however, does not au-
tomatically guarantee better access to solutions. Too many degrees of
freedom tend to be disadvantageous. By coevolving an order of instruc-
tion nodes in linear GP not only the number of possible connections is
restricted but promising connections are better preserved. So the proba-
bility is increased that functionally disconnected nodes can be reconnected
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in the evolutionary process. A limitation of connections further supports
the emergence of structurally noneffective code, i.e., non-contiguous com-
ponents.

Also recombination is less complicated between linear sequences of in-
structions than between graphs. If an instruction segment (subgraph) is
exchanged, the new parts are automatically reconnected on the functional
level in a defined manner. If not to an operator node, edges point to one
of the graph sinks, i.e., a program input (see Section 3.3).

The most important property, however, is that a linear order of operations
implicitly avoids cycles of register dependencies by allowing instructions
to use only the result of previous instructions in a program. If graph
programs are evolved without avoiding the formation of cycles, they may
not terminate by themselves but the execution has to be stopped after a
maximum number of nodes has been visited. Moreover, during variations
special attention has to be paid to all operator nodes receiving the correct
number of inputs. Depending on whether edges point in data flow direc-
tion or usage direction, either the correct number of incoming or outgoing
edges has to be checked.

Otherwise the evaluation order of nodes becomes indefinite and a stack (or
another state memory) is needed to determine both the exchange of data
between nodes (data flow) and the decision of which path is visited next
(control flow) [135, 20]. That is, the evaluation order has to be explicitly
coevolved with the graphs.

If an evolved graph structure is supposed to be acyclic without restricting
the freedom of node connections or the number of node evaluations, this
had to be verified explicitly after each variation. The detection of all
cycles in a graph is, however, computationally expensive. In linear GP
such constraints do not have to be observed during variation but result
implicitly from the linear sequence of instructions.

3.6 Summary and Conclusion

The properties of the special LGP representation that is analyzed in this
book may be summarized as follows:

� On the imperative level a linear genetic program represents a sequence
of instructions that comprise single operations or conditional operations
with a minimum number of operands. This implies that the control flow
is always forward-directed.

� On the functional level a linear genetic program describes a directed
acyclic graph (DAG) with a minimum outdegree per operator node. The
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indegree of nodes is unrestricted in principle. It follows that the data flow
in linear genetic programs is graph-based.

� Linear GP allows structurally noneffective code to coexist in programs
that results from manipulating unused registers. In the corresponding
graph structure this code may be composed of several disconnected or
only weakly connected subgraphs. The effective code forms a connected
graph component, instead, if the genetic programs return one output only.

� All operators used in linear genetic programs are mathematical func-
tions without side effects. That is, a genetic program itself always repre-
sents a function.

A linear program defined like this may still be transformed into a tree
expression. Since each tree is a special DAG this is achieved by copying
all subgraphs successively whose start node has more than one incoming
edge (starting with the root).

We showed different algorithms to extract features from linear genetic
programs about their functional or imperative structure. This includes
the detection of structural introns which is possible in runtime O(n) when
n is the number of instructions. Moreover, an algorithm was presented
that transforms a linear program into a DAG. Other more specific features
comprise the:

� Number of effective registers

� Degree of dependence (effectiveness)

� Effective dependence distance

The number of effective registers at a certain program position may serve
as an approximation for the width of the effective graph component. The
width of a graph component is limited by the maximum number of avail-
able registers. The effectiveness degree of an instruction equals the in-
degree of its corresponding graph node. The distance of an effective in-
struction to the first succeeding instruction (in the effective program) that
depends on it, instead, has no equivalent on the functional level.



Chapter 4

A COMPARISON WITH NEURAL
NETWORKS

The ability of a learning model to generalize, i.e., to predict the outcome of
unknown input situations, is an important criterion when comparing the
performance of different machine learning methods. This is all the more
true for real-world applications in data mining. This chapter compares
the generalization performance of LGP on several medical classification
problems with results obtained by neural networks using RPROP learning.

Both the time that is necessary for learning a prediction model and the
time needed for its execution are critical when operating with large data
sets as they occur in medical applications. Two methods are therefore
applied for the acceleration of LGP: (1) The absolute runtime is reduced
by using Algorithm 3.1 for the elimination of noneffective code; (2) The
effective training time is reduced on a generational basis by means of a
deme approach and an elitist migration strategy.

4.1 Medical Data Mining

Genetic programming and artificial neural networks (ANNs) can be seen
as alternative and perhaps competing techniques to solve classification and
approximation problems. In the analysis of medical data neural networks
have become an alternative to classical statistical methods. Ripley [112,
113] and Lisboa [78] have reviewed several NN techniques in medicine
including methods for diagnostic and prognostic tasks, especially survival
analysis. Most applications of NNs in medicine refer to classification tasks.
Comprehensive lists of medical applications of neural networks can be
found in [14, 114].
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Gray et al. [42] report from an early application of GP to cancer diag-
nosis with results better than those of a neural network. GP and other
evolutionary techniques have recently become more widespread in med-
ical diagnosis and prognosis [102, 131]. Again, most of these tasks are
from the realm of classification and approximation [18, 86, 106, 15, 32,
35, 145]. Various refinements of the classical GP approach are used [89,
19, 51, 132], as are hybridization techniques [123, 13, 69].

In this chapter genetic programming is applied to medical data widely
tested in the machine learning community. More specifically, LGP is
tested on six diagnostic problems that have been taken from the Proben1
benchmark set of real-world problems [109]. The main objective is to
show that for these problems (L)GP is able to achieve classification rates
and generalization performance competitive with neural networks. The
application further demonstrates the ability of genetic programming in
data mining, where general descriptions of information are to be found in
large real-world databases.

4.2 Benchmark Data sets

Table 4.1 gives a brief description of six diagnostic problems and the dis-
eases that are to be predicted. For a more detailed description the reader
may consult [109]. Medical diagnosis mostly describes classification tasks
which are much more frequent in medicine than approximation problems.

Table 4.1. Medical diagnostic tasks of Proben1 benchmark data sets.

Problem Diagnosis

cancer benign or malignant breast tumor

diabetes diabetes positive or negative

gene intron-exon, exon-intron or no boundary in DNA sequence

heart diameter of a heart vessel is reduced by more than 50% or not

horse horse with a colic will die, survive or must be killed

thyroid thyroid hyperfunction, hypofunction or normal function

The data sets have been taken unchanged from an existing collection of
real-world benchmark problems, Proben1 [109], that has been estab-
lished originally for neural networks. The results obtained with one of the
fastest learning algorithms for feed-forward neural networks (RPROP)
accompany the Proben1 benchmark set to serve as a direct compari-
son with other methods. Comparability and reproducibility of the results
are facilitated by careful documentation of the experiments. Following
the benchmarking idea the results for neural networks have been adopted
from [109] and verified. Our main objective was to realize a fair compari-



A Comparison with Neural Networks 65

son between GP and NNs in medical classification and diagnosis. We will
show that for all problems discussed the performance of GP in general-
ization comes very close to or is even better than the results documented
for NNs.

All Proben1 data sets originate from the UCI Machine Learning Reposi-
tory [88]. They are organized as a sequence of independent sample vectors
divided into input and output values. For a better processing by neural
networks the representation of the original (raw) data sets has been pre-
processed in [109]. Values have been normalized, recoded, and completed.
All inputs are restricted to the continuous range [0,1] except for the gene
data set which holds values −1 or +1 only. For the outputs a binary
1-of-m encoding is used where each bit represents one of the m possible
output classes of the problem definition. Only the correct output class
carries a “1” while all others carry “0”. It is characteristic for medical
data that they suffer from unknown attributes. In Proben1 most of the
UCI data sets with missing inputs have been completed by 0 (30% in the
case of the horse data set).

Table 4.2. Problem complexity of Proben1 medical data sets.

Problem #Attributes #Inputs #Classes #Samples

continuous discrete

cancer 9 9 0 2 699

diabetes 8 8 0 2 690

gene 60 0 120 3 3175

heart 13 6 29 2 303

horse 20 14 44 3 364

thyroid 21 6 15 3 7200

Table 4.2 gives an overview of the specific complexity of each problem
expressed in the number of attributes, divided into continuous and dis-
crete inputs, plus output classes and number of samples. Note that some
attributes have been encoded into more than one input value.

4.3 Experimental Setup

4.3.1 Genetic Programming

We employ the LGP approach that has been outlined in Chapter 2. For
each data set an experiment with 30 runs has been performed with LGP.
Runs differ only in their choice of a random seed. Table 4.3 lists the choice
of parameters used for all problems here.
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Table 4.3. Parameter settings used for LGP.

Parameter Setting

Number of generations 250

Population size 5,000

Number of demes 10

Migration rate (of best) 5%

Classification error weight 1

Maximum program length 256

Maximum initial length 25

Crossover rate 90%

Mutation rate 90%

Instruction set {+,−,×, /, sin, ex, if >, if ≤}
Constants {0, .., 255}

For benchmarking, the partitioning of the data sets has been adopted from
Proben1. The training set always includes the first 50% of all samples,
the next 25% is defined as the validation set and the last 25% of each data
set is the test set. In Proben1 three different compositions of each data
set were prepared, each with a different order of samples. This increases
the confidence that results are independent of the particular distribution
into training, validation and test set.

The fitness of an individual program is always computed using the com-
plete training set. According to the LGP algorithm described in Section
2.3 generalization performance of the best-so-far individual is checked dur-
ing training by calculating its error using the validation set. The test set is
used only for the individual with minimum validation error after training.

The applied fitness function F has two parts, a continuous component and
a discrete component (see Equation 4.1). The continuous mean square er-
ror (MSE) calculates the difference between the predicted output (vector)
gp(�ik) of an individual program gp and the desired output (vector) �ok for
all n input-output samples (�ik, �ok) and m = |�ok| outputs. The discrete
mean classification error (MCE) is computed as the average number of
incorrectly classified examples.

F(gp) = MSE + w · MCE

=
1

n · m
n∑

k=1

(gp(�ik) − �ok)2 +
w

n
· CE (4.1)

The MCE is weighted by a parameter w. In this way, the classification
performance of a program determines selection more directly while the
MSE component still allows continuous fitness improvements. For fair
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comparison, the winner-takes-all classification method has been adopted
from [109]. Each output class corresponds to exactly one program output.
The class with the highest output value designates the response according
to the 1-of-m output representation introduced in Section 4.2.

The generation in which the individual with the minimum validation error
appeared defines the effective training time. The classification error of this
individual on the test set characterizes the generalization performance
that is of main interest here.

4.3.2 Population Structure

In evolutionary algorithms the population of individual solutions may be
subdivided into multiple subpopulations. Migration of individuals among
the subpopulations causes evolution to occur in the population as a whole.
Wright [140] first described this mechanism as the island model in biology
and reasoned that in semi-isolated subpopulations, called demes, evolution
progresses faster than in a single population of equal size. This inherent
acceleration of evolution by demes could be confirmed for EAs [133] and
for GP in particular [130, 4]. One reason for this acceleration may be that
genetic diversity is better preserved in multiple demes with a restricted
migration of individuals. Diversity, in turn, influences the probability that
the evolutionary search hits a local minimum. A local minimum in one
deme might be overcome by other demes with a better search direction.
A nearly linear acceleration can be achieved in evolutionary algorithms if
demes are run in parallel on multi-processor architectures [4].

A special form of the island model, the stepping stone model [60], assumes
that migration of individuals is only possible between certain adjacent
demes which are organized as graphs with fixed connecting links. Indi-
viduals can reach remote populations only after passing through these
neighbors. In this way, the possibility that there will be an exchange of
individuals between two demes depends on their distance in the graph
topology. Common topologies are ring or matrix structures.

In our experiments, the population is subdivided into 10 demes each hold-
ing 500 individuals. This partitioning has been found to be sufficient for
investigating the effect of multiple demes. The demes are connected by
a directed ring of migration links by which every deme has exactly one
successor (see Figure 4.1). After each generation a certain percentage
of best individuals, which is determined by the migration rate, emigrates
from each deme into the successor deme thereby replacing the worst in-
dividuals. Primarily, demes are used here to allow locally best solutions
a higher reproduction by migration. By copying the best solutions of a
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deme into several others learning may accelerate because these individuals
might further develop simultaneously in different subpopulations. In gen-
eral, a more frequent reproduction of better individuals in the population
increases the probability that these solutions are selected and improved.
However, it may cause a premature loss of diversity, too. This negative
influence is partly counteracted by the use of demes. Additionally, the
migration of best is not free between demes, but restricted to only cer-
tain migration paths that are organized as a directed ring. Together with
a modest migration rate this has been found to be a good compromise
between faster fitness progress and preservation of diversity.

Migration path

Deme

Figure 4.1. Stepping stone model of directed migration on a ring of demes.

4.3.3 Neural Networks

Experimental results in [109] have been achieved using standard multi-
layer perceptrons (MLPs) with fully connected layers. Different numbers
of hidden units and hidden layers (one or two) have been tried before
arriving at the best network architecture for each problem. The training
method was RPROP [111], a fast and robust backpropagation variant. For
further information on the RPROP parameters and the special network
architectures the reader may consult [109].

The generalization performance on the test set is computed for the state
of the network with minimum validation error. Effective training time
of the neural network is measured in number of epochs until this state
is reached. One epoch has passed once all training samples have been
presented to the network.
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4.4 Experiments and Comparison

4.4.1 Generalization Performance

Table 4.4 shows the classification error rates obtained with genetic pro-
gramming and neural networks, respectively, for the medical data sets dis-
cussed in Section 4.2. Best and average CE of all GP runs are documented
on the validation set and test set for each medical data set, together with
the standard deviation. A comparison with the test classification error of
neural networks (reprinted from [109]) is the most interesting here. For
that purpose the difference Δ between the average test errors of NN and
GP is printed in percent of the largest value. A positive Δ indicates im-
proved GP results over NN. A negative Δ indicates better NN results,
respectively. Unfortunately, the classification results on the validation set
and the results of best runs are not specified in [109] for NNs.

Table 4.4. Classification error rates of GP and NN for Proben1 medical data sets.
Difference Δ in percent. Positive Δ indicates improved GP results over NN.

GP NN

Problem Validation CE (%) Test CE (%) Test CE (%) Δ (%)

best mean std.dev. best mean std.dev. mean std.dev.

cancer1 1.7 2.5 0.3 0.6 2.2 0.6 1.4 0.5 –36.7

cancer2 0.6 1.4 0.4 4.0 5.7 0.7 4.8 0.9 –16.6

cancer3 1.7 2.6 0.4 3.5 4.9 0.6 3.7 0.5 –24.9

diabetes1 20.3 22.2 1.1 21.4 24.0 1.4 24.1 1.9 +0.6

diabetes2 21.4 23.2 1.3 25.0 27.9 1.5 26.4 2.3 –5.1

diabetes3 25.5 26.7 0.7 19.3 23.1 1.3 22.6 2.2 –2.2

gene1 7.8 11.2 2.3 9.2 13.0 2.2 16.7 3.8 +22.2

gene2 9.1 12.9 2.3 8.5 12.0 2.2 18.4 6.9 +35.1

gene3 7.2 10.8 2.1 10.1 13.8 2.1 21.8 7.5 +36.6

heart1 7.9 10.5 2.4 18.7 21.1 2.0 20.8 1.5 –1.4

heart2 14.5 18.6 2.4 1.3 7.3 3.3 5.1 1.6 –29.8

heart3 15.8 18.8 1.5 10.7 14.0 2.0 15.4 3.2 +9.2

horse1 28.6 32.4 2.2 23.1 30.6 2.2 29.2 2.6 –4.5

horse2 29.7 34.3 2.7 31.9 36.1 2.0 35.9 2.5 –0.7

horse3 27.5 32.7 1.9 31.9 35.4 1.8 34.2 2.3 –3.6

thyroid1 0.8 1.3 0.3 1.3 1.9 0.4 2.4 0.4 +19.8

thyroid2 1.1 1.6 0.3 1.4 2.3 0.4 1.9 0.2 –17.3

thyroid3 0.9 1.5 0.2 0.9 1.9 0.4 2.3 0.3 +17.2

Our results demonstrate that LGP is able to reach a generalization per-
formance similar to multi-layer perceptrons using the RPROP learning
rule. The rather small number of runs performed for each data set may,
however, give an order of magnitude comparison only. In addition, the
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results for GP are not expected to rank among the best, since parameter
settings have not been adjusted to each benchmark problem. This has
deliberately not been carried out in order to show that even a common
choice of the GP parameters can produce reasonable results. In contrast,
at least the NN architecture has been adapted specifically for each data
set in [109]. Finally, the Proben1 data sets are prepared for being ad-
vantageous to NNs but not necessarily to GP, particularly in regard to
the coding of input attributes and outputs whose dimensions are larger
than in the original UCI data sets (see Section 4.2). For instance, even
if multiple program outputs required for a winner-takes-all classification
are easy to handle in linear GP by using multiple output registers, they
do not necessarily produce better results.

Notably, for the gene problem the test classification error (average and
standard deviation) has been found to be much better with GP. This is
another indication that GP is able to handle a very high number of inputs
efficiently (see Table 4.2). On the other hand, cancer turned out to be
considerably more difficult for GP than for NN judged by the percentage
difference in average test error.

Looking closer, classification results for the three different data sets of
each problem show that the difficulty of a problem may change signifi-
cantly with the distribution of data into training, validation and test set.
Especially the test error differs with the three different distributions. For
instance, the test error is much smaller for data set heart2 than for heart1.
For some data sets the training, validation and test sets cover the prob-
lem data space differently, i.e., are less strongly correlated. As a result a
strong difference between validation and test error might occur, as in the
case of cancer and heart.

Not for all problems, especially diabetes, heart, and horse, the best clas-
sification results have been produced with conditional branches. This
might be due to the fact that if branches are not necessary for a good
solution they promote rather specialized solutions. Another reason may
be the rather poor correlation of training data and generalization data
here [109]. Other problems, particularly gene, have worked better with
branches. Branches have been found to have a much smaller influence
on the generalization performance than on the training performance (not
documented). The similarity of the gain in performance strongly depends
on the correlation of training data and generalization data.
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4.4.2 Effective Training Time

The effective training time specifies the number of effective generations or
epochs, respectively, until the minimum validation error occurred. We can
deduce from Tables 4.2 and 4.5 that more complex problems cause more
difficulty for GP and NN and, thus, a longer effective training time. A
comparison between generations and epochs is, admittedly, difficult, but
it is interesting to observe that effective training time for GP shows lower
variation than for NN.

Table 4.5. Effective training time of GP and NN (rounded).

GP NN

Problem #Eff. Generations #Eff. Epochs

mean std.dev. mean std.dev.

cancer1 26 24 95 115

cancer2 26 25 44 28

cancer3 17 11 41 17

diabetes1 23 14 117 83

diabetes2 28 25 70 26

diabetes3 21 15 164 85

gene1 77 21 101 53

gene2 90 20 250 255

gene3 86 14 199 163

heart1 17 14 30 9

heart2 20 14 18 9

heart3 21 18 11 5

horse1 18 16 13 3

horse2 19 16 18 6

horse3 15 14 14 5

thyroid1 55 18 341 280

thyroid2 64 15 388 246

thyroid3 51 14 298 223

4.4.3 Acceleration of Absolute Runtime

Table 4.6 shows the percentage of noneffective instructions (and effective
instructions) averaged over all programs of a run and over multiple runs
(30 here) as identified by Algorithm 3.1 for the medical problems under
consideration. The potential acceleration of runtime, that is obtained
when removing these introns before a program is evaluated, directly results
from the intron rates (using Equation 3.1). Very often, intron rates of
80% have been observed which corresponds to an average decrease in
runtime by the intron elimination of about a factor of 5. This performance
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improvement is of practical significance especially when operating with
large data sets as they occur in medicine. A further benefit of the reduced
execution time is that the effective linear genetic programs may operate
more efficiently in time-critical applications. The reader may recall that
the elimination of introns cannot have any influence on the fitness or
classification performance (see Section 3.2.1).

Table 4.6. Percentage of introns and effective code per run in percent of the absolute
program length. Factors show speedup if only the effective code is executed. Notable
differences exist between problems.

Problem Introns (%) Eff. Code (%) Speedup

mean std.dev. mean std.dev.

cancer 65.5 2.8 34.6 2.8 2.9

diabetes 74.5 0.6 25.5 0.6 3.9

gene 90.5 1.1 9.5 1.1 10.5

heart 88.2 0.9 11.8 0.9 8.5

horse 90.8 0.4 9.2 0.4 10.9

thyroid 72.2 1.8 27.8 1.8 3.6

From Table 4.6 it may also be concluded that the average percentages
of effective program size strongly vary with the problem. The standard
deviation of program size has proven to be amazingly small between single
runs of the same problem. The differences between the three data sets
tested for each problem are found even smaller and are, therefore, not
specified here.

Different instruction types may cause different computational costs, of
course. Compared to most operations, branch instructions are rather
cheap in execution time, for instance. Additional computation is saved
with branches because not all (conditional) operations of a program are
executed for each training sample. In general, the calculation of the rel-
ative speedup factors relies on the assumption that the different compo-
nents of the instruction set are approximately uniformly distributed in the
population – over the effective code as well as over the noneffective code.

4.4.4 Acceleration of Effective Training Time

Another important result of our GP experiments is that effective training
time can be reduced considerably by using semi-isolated subpopulations
together with an elitist migration strategy (as described in Section 4.3.2).
Moreover, this is possible without leading to a notable decrease in gen-
eralization performance. A comparable series of runs without demes but
with the same population size (5,000) has been performed for the first
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data set of each problem. The average classification rates documented
in Table 4.7 differ only slightly from the results obtained with a demetic
population (see Table 4.4).

Table 4.7. Classification error rates of GP without demes. Average results similar to
results with demes (see Table 4.4).

GP without Demes

Problem Validation CE (%) Test CE (%)

best mean std.dev. best mean std.dev.

cancer1 1.1 2.1 0.5 1.2 2.9 1.2

diabetes1 19.3 21.4 0.7 20.3 24.4 1.7

gene1 7.7 11.0 3.0 9.0 12.6 3.1

heart1 7.9 11.0 3.0 18.7 22.3 2.9

horse1 26.4 32.4 1.9 22.0 30.7 3.5

thyroid1 0.7 1.3 0.4 1.2 2.0 0.5

Table 4.8 compares the effective training time using a panmictic (non-
demetic) population with the respective results from Table 4.5 after the
same maximum number of 250 generations. On average, the number of
effective generations is reduced by a factor of about 3. Thus, a significantly
faster convergence of runs is achieved by using a demetic approach that
allows only better individuals to migrate without compromising quality
of the results.

Table 4.8. Effective training time of GP with and without demes. Significant acceler-
ation with demes and an elitist migration strategy.

GP with Demes GP without Demes

Problem #Eff. Generations #Eff. Generations Speedup

mean std.dev. mean std.dev.

cancer1 26 24 62 67 2.4

diabetes1 23 14 62 53 2.7

gene1 77 21 207 42 2.7

heart1 17 14 68 75 4.0

horse1 18 16 59 63 3.3

thyroid1 55 18 200 36 3.6

Not surprisingly, programs grow less within a smaller number of effec-
tive generations (not shown). In this way, a demetic population controls
program size, at least of the best generalizing solutions.
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4.4.5 Further Comparison

Note that reducing the (relative) training time on a generational basis af-
fects the absolute training time, too, because runs may be stopped earlier.
Comparing the absolute runtime of genetic programming and feed-forward
neural networks, the fast NN learning algorithm has been found to be su-
perior. One should keep in mind, however, that large populations have
been used with the GP runs to guarantee a sufficient diversity and a suffi-
cient number of (not too small) subpopulations. Because we concentrate
on a comparison in classification performance the parameters of the LGP
system have not been optimized for runtime. Nevertheless, the proposed
speedup techniques for (L)GP help to reduce the difference in runtime to
NN, especially if smaller populations of genetic programs are used.

In contrast to neural networks, GP is not only capable of predicting out-
comes but may also provide insight into and a better understanding of the
medical diagnosis by an analysis of the learned models (genetic programs)
[89]. Knowledge extraction from genetic programs is more feasible with
programs that are compact in size and free from redundant information.
Thus, the elimination of noneffective code in our LGP system may serve
another purpose in generating more intelligible results than do NNs.

4.5 Summary and Conclusion

We reported on LGP applied to a number of medical classification tasks. It
was demonstrated that, on average, genetic programming performs com-
petitive to RPROP neural networks with respect to the generalization
performance.

The runtime performance of genetic programming becomes especially im-
portant for time-critical applications or when operating with large data
sets from real-world domains like medicine. Two techniques were pre-
sented that reduced the computational costs significantly.

First, the elimination of noneffective code from linear genetic programs
resulted in an average decrease in runtime of about a factor of 5 here.
Second, by using a demetic population in combination with an elitist
migration strategy the number of effective generations was reduced by a
factor of about 3, without decreasing the performance of the evolutionary
algorithm.
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Chapter 5

LINEAR GENETIC OPERATORS I –
SEGMENT VARIATIONS

Crossover has been the traditional operator in tree-based GP for vary-
ing the content and size of programs. In this chapter we systematically
introduce crossover and mutation operators for the linear program repre-
sentation and compare their influence on prediction performance and the
complexity of evolved solutions.

We can distinguish between two different levels of variation done by these
operators. Macro variations operate on the instruction level (or macro
level). In this perspective, an instruction represents the smallest unit.
Micro variations operate on the level of instruction components (micro
level) and manipulate registers, operators, and constants. Only macro
variations influence program growth. Macro variations may be further
divided into segment variations and instruction variations, depending on
whether a contiguous subsequence of instructions or only one instruction
is subjected to change. Only segment variations will form the subject of
this chapter. Other variations will be treated in a subsequent chapter.

We will see that the performance of a variation operator strongly depends
on its maximum (and average) step size on the symbolic program struc-
ture, on its influence on code growth, and on the proportion of effective
and neutral variations. Among other things, macro mutations with mini-
mum step size will turn out to be most effective provided that a change of
the structurally effective code can be guaranteed. We will also investigate
how linear genetic programs can be manipulated more efficiently through
respecting their functional structure.
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5.1 Variation Effects

Basically, two different effects of a variation operator can be distinguished
in evolutionary computation. These are its effects on the genotype and
its effects on the phenotype. In GP the genotype is represented by the
program structure while the phenotype is determined by the semantics
(execution behavior) of the program.

5.1.1 Semantic Variation Effects

The phenotype quality is measured by a fitness function F : P → IR+
0 .

Fitness distributions have been proposed as a means for understanding
(semantic) variation effects in evolutionary computation. In [43] the fit-
ness distribution (FD) of a variation operator v is described as the prob-
ability distribution of the offspring fitness Fo depending on the fitness of
parent(s) F{p}:

FDv(F{p}) := Prob(Fo|F{p}). (5.1)

A fitness distribution is quite complex and, in general, rather difficult to
compute. In practice it is usually sufficient to focus on important features
of the fitness distribution [91, 53] which can serve as an approximation to
the actual distribution. If we assume that a better fitness always means a
smaller value of F (F being an error function), the following definitions
are valid.

Definition 5.1 (constructive/destructive/neutral variation)
A variation is defined as constructive iff the difference between the fitness
Fp of a parent individual and the fitness Fo of its offspring is positive, i.e.,
Fp − Fo > 0. In the case of a negative difference, i.e., Fp − Fo < 0, we
refer this as a destructive variation. Finally, a genetic operation is neutral
if it does not change the fitness, i.e., Fp = Fo.1

In the LGP algorithm of Section 2.3 two offspring are created from two
parents in each iteration. Either recombination is applied once between
both parents and produces two offspring or mutation is applied on each
parent separately. In both cases we compare the parent and the offspring
with the same index, i.e., p1 with o1 and p2 with o2. That is, the state of
a program at a certain position in memory is compared before and after
it has been varied.

1We stick here to exact neutrality, but realize that other definitions are possible, too. Sometimes
the fitness cannot be calculated exactly, and sometimes, the definition might consider fitness
values as equal within a certain tolerance interval. For a recent review of near-neutrality in
Biology, see [96].
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We are interested in the proportion of constructive, destructive, and neu-
tral operations per generation. Such measurements are sensitive to the
direction of semantic variation effects, but neglect other features of a fit-
ness distribution, like the amount of a fitness change (see Section 5.3).

5.1.2 Structural Variation Effects

The program structure or genotype can also be subjected to measure-
ments. The quantity of interest is the proportion of effective and nonef-
fective variations as defined by:

Definition 5.2 (effective/noneffective variation)
A genetic operation applied to a linear genetic program is called effective
iff it affects the structurally effective code according to Definition 3.4.
Otherwise, a variation is called noneffective.

Note that even if effective code is altered the program output for the set
of fitness cases considered might be the same. An effective variation is
merely meant to bring about a structural change of the effective program.
There is no change of program semantics (fitness) guaranteed, mostly due
to the existence of semantic introns. From the above definitions it follows
that all structurally noneffective variations are semantically neutral but
not the other way around.

Measuring the amount of structural change between parent and offspring
requires the definition of a structural distance metric between genetic
programs (see below and Chapter 10).

5.2 Effective Variation and Evaluation

In principle, there are two different ways to identify effective variations.
Either the effectiveness is implicitly guaranteed by the genetic operator
itself (see Section 6.2.3) or the effective code of an individual is compared
explicitly before and after the variation (see Section 5.7.4). The latter
method will be necessary with recombination.

By using Algorithm 3.1 the effective code of parent and offspring can be
identified and extracted in linear computation time O(n) where n denotes
the maximum program length. In doing so, the two effective programs
may be compared in worst case by O(n) comparisons of instructions which
is reduced to comparisons of integers in our implementation (see Section
2.1.1). An effective variation has been detected after the comparison failed
for one instruction position.
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In order to avoid another application of Algorithm 3.1 before fitness eval-
uation, the effective code of each program should be saved separately. A
less memory-intensive alternative we apply here marks all effective instruc-
tions within the program representation (see Section 3.2.1). An update
flag for each program decides whether the effective code has already been
calculated or not.

If a variation has been identified as noneffective the effective code is un-
changed. In this case, a new fitness evaluation of the offspring is unnec-
essary and can be skipped since its behavior clearly cannot be different
from the parent. This produces a difference between comparing variation
operators on the basis of generations (number of varied individuals) and
evaluations (number of effective variations) because it is no longer guar-
anteed that each new (varied) individual will be evaluated. Evaluating
individuals only after effective variations will be referred to as effective
evaluation in the following.

Besides the removal of noneffective code before fitness evaluation, this
method is a further technique to accelerate runtime of linear GP. De-
pending on the rate of noneffective operations induced by a variation op-
erator, a high amount of fitness evaluations might be saved. The overall
acceleration in runtime can be expressed by the factor

αacc =
nvar

n(eff)var
(5.2)

where n(eff)var is the number of (effective) variations.

In general, fitness evaluation is by far the most time-consuming step in
a GP algorithm. Computational costs for variation may be neglected if
the time for calculating a new search point is linear in program size. This
holds for both techniques, the detection of effective variations, as well as
the detection of effective code.

5.3 Variation Step Size

We now return to the amount of structural program change. Let variation
step size denote the distance between a parent individual gpp and its
offspring gpo that results from the application of one or more variation
operators.

The phenotype distance or semantic step size is calculated by a semantic
distance metric dP : P × P → IR+

0 . The absolute difference in fitness
dP(gpp, gpo) := |F(gpp) − F(gpo)| identifies a phenotype with its fitness
value. This is a gross simplification because the fitness function F cannot
expected to be bijective in general (see Section 1.2). Usually many more
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genetic operations are destructive than constructive in GP, while fitness
deteriorations will, on average, be larger than improvements. As a re-
sult, the average fitness distance E(|F(gpp)−F(gpo)|) is often dominated
by large negative terms. In order to avoid this dominance, positive and
negative fitness changes should be computed separately.

Measuring the genotype distance or structural step size dG(gpp, gpo) re-
quires an appropriate distance metric dG : G × G → IN+

0 to be defined on
the program structure. We measure all structural step sizes absolutely
in instructions, not relative to the program length. Relative step sizes
are more difficult to control and to minimize during a run since programs
grow. Moreover, the corresponding semantic step size may be only partly
proportional to the length of the linear genetic program.

Definition 5.3 (structural step size)
For macro operators in linear GP let the (absolute) structural step size be
defined as the number of instructions that are added to a linear program
plus the number of instructions that are removed during one variation
step from parent to offspring program.

Definition 5.3 is more precise than simply calculating the distance in pro-
gram length if code is both inserted and deleted in one step, e.g., during
crossover. It is also more precise than using the (average) segment length
only since an exchange of code may be more destructive than a deletion or
an insertion. This definition only disregards the possibility that the actual
step size may be smaller due to an exchange of similar code segments at
similar positions.

Accordingly, the effective step size may be defined intuitively as the num-
ber of inserted and/or deleted effective instructions. When using unre-
stricted segment variations the effective step size is sufficiently approxi-
mated in this way. Nonetheless, such a definition is imprecise since ad-
ditional instructions may become effective or noneffective upstream from
the varied program position (variation point). In particular if the abso-
lute variation step size is minimal, i.e., one instruction, these side effects
within the linear program structure become relevant. Thus, the following
definition is more suitable:

Definition 5.4 (effective step size)
The effective step size is defined as the number of instructions that are
added to or removed from the effective program including instructions that
change their effectiveness status, i.e., that are deactivated or reactivated,
as a consequence of the variation of parent to offspring.
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We note in passing that micro mutations affect, by definition, a single
instruction component only. That is, their absolute step size is always
constant and minimum. Nonetheless, their effective step size may be much
larger. This is the case, for instance, if an effective instruction register is
replaced on which the effectiveness of many other instructions depends.

On the functional level the absolute step size measures the total number
of deleted or inserted graph nodes. The effective step size, instead, counts
all instruction nodes that are connected to or disconnected from the effec-
tive graph (see Section 3.3). Thus, effective step size can better observe
the functional structure of a linear program. The distance between the
effective code of parent and offspring is more precise because it is more
closely related to fitness distance. That is, a smaller effective step size
may be assumed to lead to a smaller change in fitness. In Chapter 9 we
will present distance metrics that calculate effective distance between lin-
ear genetic programs. This information is used to explicitly control the
variation step size on effective code. In the present chapter, however, the
absolute variation step size is controlled on the full program structure.

The proportion of noneffective code within a linear genetic program and
the absolute program size influence the effective step size that is induced
by segment variations, both for recombination and mutation. A higher
intron rate will lead to less effective instructions being deleted and/or
inserted during variation. So despite the fact that introns do not di-
rectly contribute to the fitness of a program, they increase average fitness
and survivability of its offspring. More generally, an explicit or implicit
reduction of effective step size increases the effective fitness [91] or the
evolvability [3] of the population of programs. The notion of effective step
size allows the evolvability of linear genetic programs to be measured and
explicitly controlled. In doing so, the effective step size considers not
only structural aspects of a genetic program, like the intron rate, but also
the influence of the absolute step size of the variation operator. We will
demonstrate in this chapter (and in Chapter 9) that a minimization of
effective step sizes, i.e., a maximization of the effective fitness, yields the
best performance.

5.4 Causality

In the following, unless otherwise stated, the term step size will refer to
the absolute structural variation distance. In evolutionary computation
the term originates from the idea of a fitness landscape [83, 54] where
all possible solutions of the (genotype) search space are organized in a
structural neighborhood – by using a structural distance metric – and their
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fitness values constitute a relatively smooth surface. In GP the surface of
the fitness landscape depends not only on the problem definition (fitness
function) but also on the system configuration, in particular the set of
program instructions. The application of a variation operator corresponds
to performing one step on the fitness landscape. Both the roughness of the
surface and the step size of the variation operator determine the success
of the evolutionary search process.

On the one hand, the variation operator has to allow progress in steps
that are small enough to approach a global optimum solution or at least a
good local optimum. That means, it should exploit the fitness information
of adjacent search points by a gradient descent. It can be considered a
strength of evolutionary algorithms that the exact gradient is not followed,
but rather a gradient diffusion process takes place [110]. Due to new
search points being selected randomly without a constant direction, an
evolutionary search will less likely get stuck in local minima (suboptima)
of the fitness landscape. Usually there is more than one global optimum
in the genotype space since programs with optimum fitness are not unique
in their structure, what is known as code redundancy.

On the other hand, the average variation step size must not be too small.
Otherwise the global evolutionary progress may be too restricted. A suffi-
cient proportion of larger steps may be required to avoid the evolutionary
process getting bogged down early in a local suboptimum. That is, suffi-
cient exploration of the fitness landscape has to be maintained. This may
depend, however, on other factors like population size and diversity of the
population material. Moreover, exploration requires a sufficient propor-
tion of neutral variations, which will allow random walks (neutral walks)
over the fitness landscape.

This chapter will show that linear genetic programming benefits strongly
from a reduction of variation step size. Even minimum step sizes on
the program structure seem to be still large enough to escape from local
minima.2 This might be interpreted in such a way that an exploration-
exploitation trade-off does not exist. But keep in mind that the fitness
landscape is not perfectly smooth, especially when operating on a symbolic
representation. Even small changes of the program structure may still
result in large changes of program semantics.

Strong causality requires a completely “smooth” fitness landscape [110],
i.e., small changes of position (individual) in the high-dimensional land-
scape always imply small changes in height (fitness). Therefore, this fea-

2The fitness function always minimizes a prediction error here.
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ture postulates Equation 5.3 to be valid for any three search points:

∀p1, p2, p3 ∈ G : dG(p1, p2) ≤ dG(p1, p3) ⇔ dP(p1, p2) ≤ dP(p1, p3) (5.3)

Strong causality is, however, not a necessary condition for the proper
working of evolutionary algorithms in general. Indeed, this condition is
not strictly fulfilled by most evolutionary algorithms. Already from ob-
servations in nature we may not assume a strong causality between geno-
type and phenotype. In biological evolution the DNA may be subject to
large modifications without affecting the organism significantly. Some-
times large modifications of the phenotype may result from only little
genotype changes. Nevertheless, the vast majority of natural variations
on genotype level is rather small and is expressed (if ever) in small varia-
tions of the phenotype. Among other things, this is due to the redundancy
of the genetic code.

A fitness landscape should be smooth at least in local regions (locally
strong causality) [110, 121]. Otherwise, evolutionary search may not be
more powerful than random search. In an extremely rugged surface a
search point (individual) would contain only little or no information about
the expected fitness of its direct neighbors. Ruggedness of the fitness
landscape is one aspect, but flatness of the fitness landscape is another.
Flat regions make a problem hard for an evolutionary algorithm, because
on such fitness plateaus no gradient information is available.

Neutral variations are important for problems with wide fitness plateaus
occurring frequently with discrete fitness functions. In flat regions of
the fitness landscape neutral variations maintain evolutionary progress
by a random exploration in the genotype space. That is, the population
spreads wider over a fitness plateau by neutral drift which increases the
probability to find a better solution. If a fitness gradient is discovered
the population will quickly concentrate on the neighborhood of this local
optimum again, since individuals in that region will spread faster in the
population.

Changing a small program component in genetic programming may lead
to almost arbitrary changes in program behavior. On average, however,
we may assume that the less instructions are modified the smaller the
fitness change will be. With a high probability smaller variations in geno-
type space, i.e., smaller variation step sizes, result in smaller variations in
phenotype space, i.e., smaller fitness distances. Such a stochastic causality
or weak causality is a necessary precondition of a program representation
and its genetic operators. In Section 9.7.1 a positive correlation between
structural and semantic step sizes will be shown empirically for different
variation operators and problems.
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5.4.1 Self-Adaptation

Automatic optimization of variation parameters by self-adaptation has
been applied successfully in different disciplines of evolutionary algo-
rithms. In evolution strategies (ES) [110, 119] mutation step sizes are
coevolved as part of the individual representation in the form of standard
deviation parameters. In the most simple case there is only one mutation
step size for all objective variables. Rather than using a deterministic con-
trol rule for the adaptation of such parameters, the parameters themselves
are subject to evolution. Self-adaptation differs from a global adaptive
parameter control because the parameters are adapted locally during evo-
lution. The modification of parameters is under the control of the user by
a fixed mutation step size, called learning rate. Selection is performed on
the basis of an individual’s fitness. The propagation or extinction of vari-
ation parameters in the population is therefore coupled with the fitness of
the carrier individual. Consequently, the success of a certain parameter
configuration directly depends on how the variation operator performs on
an individual with these settings. It is generally recommended to mutate
the variation parameters of an individual first before the new settings are
applied for the variation of the individual. The reverse mechanism might
suffer from a propagation of (good) individuals with rather bad parame-
ters because those have not been used for finding the current position of
the individual on the fitness landscape.

Good results may also be obtained by using a lower mutation rate for the
parameters than for the actual individuals. Otherwise good individuals
with bad parameter settings might spread too quickly in the population
at the beginning of a run. This again may lead to an early loss of diversity
while the search process gets caught in a local minimum. Note that the
fitness of an individual does not depend directly on the quality of its
variation parameters, but parameters will influence the average survival
probability and potential fitness of its offspring.

The general motivation for self-adaptation and variable parameters is two-
fold: (1) It may outperform an optimal parameter setting that remains
constant during a run and find the optimal solution, i.e., genetic program,
faster; (2) it may be the only efficient way to find the (or a nearly) optimal
setting. Especially if the dimension of the parameter vector is high, an
optimal parameter configuration may hardly be detected just by choosing
random fixed settings.

In Section 6.4.5 we will analyze a self-adaptation approach to optimize
mutation step size in terms of the number of mutation points on the
(symbolic) program representation.
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5.5 Selection of Variation Points

Due to the hierarchy of nodes in tree programs a variation point (node)
can be expected to be more influential the closer it lies to the root of the
tree. If nodes are selected independent of their position, deeper nodes are
automatically chosen more frequently because most nodes are closer to a
leaf. In a completely balanced binary tree of n nodes exactly �n

2 � nodes are
inner nodes and �n

2 � nodes are leaves. Thus, half of the variation points
would fall upon constants or variables. This implicit bias of tree crossover
results in a lower variation probability and, thus, in a loss of diversity
in tree regions closer to the root. In order to compensate this tendency
Koza [64] imposes an explicit counter bias on the crossover operator by
selecting inner (function) nodes with a high probability (90 percent). An
alternative solution is to select depth prior to selecting the actual node
among all nodes of that depth with the same probability [46].

In a linear program the situation is different. One may assume that each
program position has a similar influence on program semantics, at least
if a rather moderate number of registers is provided. Recall that the
internal structure of an LGP program, as defined in Chapter 3, represents
a directed acyclic graph (DAG) that is restricted in width through the
number of registers provided (see Section 3.3). In a tree each node can be
reached via a unique path from the root, i.e., each node is connected to
only one incoming edge. In a DAG more than one program path may lead
to the same node, i.e., a node may be connected to several incoming edges.
Therefore, it may be justified to select each instruction for variation with
the same probability.

However, even if the maximum width of the graph representation is re-
stricted and the number of incoming edges is free there is not enough
information about the specific functional structure of a particular linear
program. The algorithms that have been presented in Section 3.4 extract
special features about the functional or imperative program structure.
Among other things, this information can be used to bias the choice of
variation points.

In Section 6.4.6 mutation points will be selected with different probabil-
ity distributions depending on their effective position in the imperative
representation. The relative position of an effective instruction in a pro-
gram is of minor importance as long as all instructions are selected with
the same probability. Only if selection of variation points is non-uniform,
e.g., biased towards the end or the beginning of the imperative program,
it becomes important that the relative position of an instruction is similar
to the position of its corresponding node in the functional program. A
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small average effective dependence distance, for instance, indicates that
the order of instructions is high, i.e., functionally dependent instructions
lie close to each other in the imperative code.

5.6 Characteristics of Variation Operators

Together with the selection operator, the variation operators determine
the efficiency of an EA and its representation of individuals. Before we
discuss and compare various genetic operators for the linear program rep-
resentation, we summarize some general features of variation operators
and program representation that we believe are important for genetic
programming. The following general rules are meant to be independent
from a special type of program representation. Some of the design rules
are also valid for evolutionary algorithms in general [33].

(1) Genetic programming is working with a variable-length representation
that is supposed to grow during the course of a run. First, evolutionary
search is, in general, more successful when starting with relatively small
initial programs. Second, fitter solutions require a certain minimum com-
plexity, i.e., they are located in more complex regions of the search space.
Therefore, the variation operator(s) should allow sufficient code growth
within a reasonable number of generations, acted upon by a selection
operator that favors longer programs if they show better performance.

(2) Local search is an important property in every search algorithm. It
means that a variation operator or a combination of variation operators
should explore the region around the parent search point(s) more thor-
oughly than more distant regions of the search space. This implies that
the structural similarity between parent and offspring should be higher,
on average, than between arbitrary individuals. If we assume the fitness
landscape to be smooth locally, good search points are at least partly
adjacent to other good search points.

(3) We recommend the use of minimal variation steps on program size by
the insertion or deletion of a single instruction. Usually even these small
variations of program complexity induce sufficiently large semantic steps.

(4) The design of efficient genetic operators strongly depends on the rep-
resentation of individuals. The phenotype function and its fitness should
be efficiently computable from the genotype representation (efficient in-
terpretation) to keep the time of fitness evaluation as short as possible.
Moreover, the genotype representation should allow efficient variation.
Ideally, computation time should be linear in program size.
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(5) The program representation should offer sufficient freedom of vari-
ation (high variability) to allow small structural variations at each pro-
gram position throughout the entire run. This will have the advantage
that noneffective code may emerge at every position with about the same
probability.

(6) In order to guarantee that all effects on a program are reversible, each
genetic operator should be employed together with its inverse operator
(reversibility). It may even be required that these two genetic operators
be applied with the same probability (symmetry), i.e., without any bias
towards a certain search direction.

(7) In general, variation operators are better bias-free, i.e., they should
not let programs grow without fitness selection. Code growth should not
occur just because certain genetic operators are applied.3

(8) Programs produced by a variation operator in GP must be valid in the
underlying programming language, they must satisfy the constraints of a
program structure in that language (syntactic closure). The feasibility of
a program solution should either be guaranteed by the variation operators
or, if this is not efficient, through a post-processing step with special repair
mechanisms.

(9) In most program representations used in GP, redundant pieces of code
can be identified. Unnecessary program growth in genetic programming
has become known as the bloat effect (see also Chapter 10). In order
to avoid large solutions that are inflexible during the evolutionary pro-
cess and may increase evaluation time, variation operators should keep
the rate of redundant code growth as small as possible (minimum code
redundancy).

(10) By increasing the effectiveness of genetic operations, i.e., the prob-
ability that effective code is modified, less variations remain neutral in
terms of a fitness change.4 As a result, evolution may progress faster over
the same number of generations. Provided that redundant code elements
can be identified efficiently for a program representation, the effectiveness
of variations may be increased, e.g., by an explicit removal of redundant
code from programs in the population. Other possibilities will be intro-
duced in this and the following chapter.

3Chapter 6 will show special operators, however, which may benefit from an explicit growth
bias.
4The same effect is achieved by increasing variation step size.
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5.7 Segment Variation Operators

We now explain in more detail the inner working of segment variations,
operators that delete and/or insert an instruction segment whose length is
normally restricted only by the program length. Different recombination
and mutation operators are discussed for the linear program representa-
tion. Let us start with the standard variant of LGP which applies linear
crossover.

5.7.1 Linear Crossover

Standard linear crossover always produces two offspring by exchanging
two arbitrarily long, contiguous subsequences (segments) of instructions
between two parent individuals. The principle has been illustrated in Fig-
ure 2.4. By definition, linear crossover guarantees a minimum segment
length of one instruction (= minimum program length lmin). The imple-
mentation of linear crossover used in the following experiments is given by
Algorithm 5.1. The identifier cross will be used to refer to this operator.
The maximum length of segments lsmax is unrestricted, i.e., it equals the
program length. The whole program code may thus be replaced in one ge-
netic operation. Let the term crossover point denote the first instruction
of a segment. The end of a segment is uniquely identified by the segment
length. The position of the first instruction in a program is always 0 (see
also Figure 5.1).

Algorithm 5.1 (linear crossover)
Parameters: two linear programs gp1 and gp2; minimum and maximum
program length lmin and lmax; maximum segment length lsmax; maximum
distance of crossover points dcmax; maximum difference in segment length
dsmax.

1. Randomly select an instruction position ik (crossover point) in program
gpk (k ∈ {1, 2}) with length l(gp1) ≤ l(gp2) and distance |i1 − i2| ≤
min(l(gp1) − 1, dcmax).

2. Select an instruction segment sk starting at position ik with length
1 ≤ l(sk) ≤ min(l(gpk) − ik, lsmax).

3. While difference in segment length |l(s1)− l(s2)| > dsmax reselect seg-
ment length l(s2).

4. Assure l(s1) ≤ l(s2).

5. If l(gp2)− (l(s2)− l(s1)) < lmin or l(gp1) + (l(s2)− l(s1)) > lmax then
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(a) Select l(s2) := l(s1) or l(s1) := l(s2) with equal probabilities.

(b) If i1 + l(s1) > l(gp1) then l(s1) := l(s2) := l(gp1) − i1.

6. Exchange segment s1 in program gp1 by segment s2 from program gp2

and vice versa.

If the crossover operation cannot be executed because one offspring would
exceed the maximum program length, equally long segments are ex-
changed. In order to avoid a bias towards smaller segments, Algorithm
5.1 selects randomly one of the two segment lengths. The algorithm is still
slightly biased in terms of selecting shorter segments more frequently, due
to the fact that crossover points are selected before the segment length is
determined. The selection of crossover points, however, is unbiased, i.e.,
their distribution is uniform over the program positions. Experimental
results will show below that a restriction of the segment length is less
critical than restricting the free choice of crossover points.

It is important to note that linear crossover is not explicitly biased towards
creating larger individuals. Because, by definition, it only moves existing
code within the population by mutual exchange between individuals and
because individuals are selected randomly, the average program length is
not growing without fitness selection.

One way to reduce the structural step size of linear crossover explicitly
is to put a maximum limit on the absolute segment length. This way
the amount of program change is decoupled from the program length.
A relative upper bound for the segment length in percent of the current
program length is not a feasible alternative. First, the segment length
would still depend on the absolute program length. Because programs
grow during a run such relative step sizes would increase, too. Second,
the influence exerted by a segment of code is partially independent of the
overall length of program this segment is inserted into (see also Section
10.7.6).

Another crossover parameter is the maximum distance of crossover points
dcmax (in instructions) between both parents. A restriction of this dis-
tance reduces the probability that a piece of code may migrate to a far
distant program position which implies a reduction of variation freedom.

A third parameter that influences the performance of crossover is the
maximum difference in segment length dsmax between parents. Together
with the absolute segment length, this parameter controls the step size of
linear crossover. If dsmax := 0 program growth is impossible. By choosing
a moderate value for dsmax a simple size fair crossover is realized in linear
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GP. Such an operator is more complicated to realize with subtree crossover
[72].

Figure 5.1 illustrates all three control parameters. The performance of
linear crossover can also be influenced by the probability distribution of
crossover points, segment length, or length differences. For instance, seg-
ment lengths may either be uniformly distributed over a maximum range
(standard case) or normally distributed such that either smaller or larger
segments are exchanged more frequently.

Crossover Point Segment Lengths

Distance of Crossover Points

0
Position

Difference in Segment Length

Parent 2

Parent 1

Figure 5.1. Basic parameters of linear crossover.

Obviously, there is an analogy between crossover of instruction sequences
in linear GP and crossover of DNA strings in nature. In fact, this analogy
to biological crossover was the original inspiration for the use of crossover
in evolutionary algorithms. But there are some basic differences. The
vast majority of crossover operations in nature is homologous and based
on the chromosomal organization of DNA [136]. Biology causes homol-
ogy through a strict base pairing of equally long DNA sequences while
similarity of structure is closely related to similarity of function.

In [94] we propose the use of homologous crossover in linear GP. The
basic idea is that similar sequences of instructions are exchanged during
the course of evolution. This may be regarded as an indirect reduction of
crossover step size. Homologous linear crossover also implies a restriction
of both the average distance of crossover points and the average difference
in segment length. Platel et al. [105] compute the optimal alignment
with gaps between two program sequences – by minimizing a string edit
distance [44] – before applying one-point linear crossover.

Other variants of linear crossover include block crossover [94] used with
machine code and page-based crossover [49]. Both subdivide the pro-
grams into fixed-length instruction blocks and allow crossover point to fall
only between blocks. In the latter case the number of blocks and, thus,
the program length are fixed because crossover only swaps single pages
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between individuals. Dynamic page-based crossover [49] allows variable
block lengths up to a predefined maximum, instead.

5.7.2 One-Point Crossover

Standard linear crossover may also be considered a two-point crossover
operator because both the beginning and the end of the instruction seg-
ments exchanged are subject to variation. Segments may be located in the
midst of a program. With one-point crossover (abbr. onepoint), programs
are swapped at one point only. That is, the end of the code segment
swapped is always identical to the end of program (see Algorithm 5.2).
If a new individual would exceed the maximum program length, the two
crossover points are chosen at equal positions in both parents, instead.
Compared to two-point crossover, one-point crossover necessarily leads
to larger absolute step sizes since larger segments of instructions are ex-
changed. Furthermore, the absolute step size may not be restricted that
easily by a control parameter, at least not without restricting the free
choice of crossover points.

Algorithm 5.2 (one-point crossover)
Parameters: two linear programs gp1 and gp2; minimum and maximum
program length lmin and lmax; maximum distance of crossover points
dcmax.

1. Randomly select an instruction position ik (crossover point) in program
gpk (k ∈ {1, 2}) with length l(gp1) ≤ l(gp2) and distance |i1 − i2| ≤
min(l(gp1) − 1, dcmax).

2. l(s1) := l(gp1) − i1,
l(s2) := l(gp2) − i2.

3. Assure l(s1) ≤ l(s2).

4. If l(gp2)− (l(s2)− l(s1)) < lmin or l(gp1) + (l(s2)− l(s1)) > lmax then

(a) If l(gp1) ≥ l(gp2) then i1 := i2 else i2 := i1.
(b) Go to → 2.

5. Exchange segment s1 in program gp1 by segment s2 from program gp2

and vice versa.

5.7.3 One-Segment Recombination

Crossover requires, by definition, that information is exchanged between
individual programs. However, an exchange always includes two opera-
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tions on an individual, the deletion and the insertion of a subprogram.
The imperative program representation allows instructions to be deleted
without replacement since instruction operands, e.g., register pointers, are
always defined. Instructions may also be inserted at any position without
a preceding deletion, at least if the maximum program length is not ex-
ceeded. But if we want linear crossover to be less disruptive it may be a
good idea to execute only one operation per individual.

These considerations motivate a one-segment or one-way recombination
(abbr. oneseg) of linear genetic programs as described by Algorithm 5.3.
Standard linear crossover may also be referred to as two-segment recom-
bination, in these terms.

Algorithm 5.3 (one-segment recombination)
Parameters: two linear programs gp1 and gp2; insertion rate pins; deletion
rate pdel; minimum program length lmin; maximum program length lmax;
maximum segment length lsmax.

1. Randomly select recombination type insertion | deletion for probabil-
ity pins | pdel and with pins + pdel = 1.

2. If l(gp1) < lmax and (insertion or l(gp1) = lmin) then:

(a) Randomly select an instruction position i in program gp1.

(b) Randomly select an instruction segment s from program gp2 with
length 1 ≤ l(s) ≤ min(l(gp2), lsmax).

(c) If l(gp1) + l(s) > lmax then reselect segment s with length l(s) :=
lmax − l(gp1)

(d) Insert a copy of segment s in program gp1 at position i.

3. If l(gp1) > lmin and (deletion or l(gp1) = lmax) then:

(a) Randomly select an instruction segment s from program gp1 with
length 1 ≤ l(s) ≤ min(l(gp2), lsmax).

(b) If l(gp1) − l(s) < lmin then reselect segment s with length l(s) :=
l(gp1) − lmin

(c) Delete segment s from program gp1.

4. Repeat steps 1 to 3 with exchanged program identifiers gp1 and gp2.

In traditional tree-based GP an exchange of subtrees during crossover is
necessary because the constraints of the tree structure require removed
code to be replaced. Nevertheless, pure deletions or insertions of subtrees
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can be implemented in the following manner: A deleted subtree is substi-
tuted by one of its subtrees. Likewise, a subtree is inserted at a random
position such that the old subtree becomes a leaf of the new one.

Whether a segment is deleted from an individual or whether a segment
is inserted from another individual depends on a deletion rate pdel and
an insertion rate pins. These allow a growth bias or a shrink bias to be
adjusted for one-segment recombination, depending on whether pins > pdel

or pins < pdel. Such an explicit bias allows programs to grow without
fitness information. Note that an explicit bias may not be realized with
crossover because it does not alter the average program length in the
population. Only two-segment mutations (see Section 5.7.5) allow a more
frequent exchange of smaller segments by larger ones (or vice versa). Since
program growth is controlled more precisely over the maximum segment
length, however, we apply one-segment recombination without an explicit
bias, i.e., pins = pdel, in the following.

5.7.4 Effective Recombination

In principle, there are two possibilities to increase the number of effective
variations and, thus, to reduce the probability that a variation stays neu-
tral in terms of a fitness change. Either the noneffective code in programs
is reduced actively or genetic operations concentrate on the effective part
of the code.

To examine whether noneffective code influences recombination of effec-
tive code, we may remove all noneffective instructions immediately after
each variation from the new individuals in the population5 using Algo-
rithm 3.1. In contrast to removing structural introns before the fitness
calculation, the population comprises only effective programs and each
variation automatically becomes effective. Due to the absence of nonef-
fective instructions, effective step sizes will be larger and variations may
be more destructive on the effective code. We name this variant effective
recombination or effective crossover (abbr. effcross) [23].

Some researchers [124] propose to remove redundant code parts before tree
crossover to reduce code growth. Other researchers [16] reduce the rate
of neutral crossover operations by avoiding a crossover point falling upon
an intron subtree. However, intron detection in tree-based GP is difficult,
since only semantic introns exist. Detection can only be accomplished
incompletely and strongly depends on the problem and the set of functions

5It has to be explicitly guaranteed that the absolute program length does not fall below the
minimum (one instruction).



Segment Variations 95

and terminals provided. In [124] unfulfilled if-statements are partially
identified in tree programs and removed.

An alternative variant of effective recombination is realized by an explicit
control of effectiveness. That means a variation is repeated until effective
code has been altered. The effective code of two programs can be com-
pared efficiently (see also Section 5.2). Prior to that comparison, however,
Algorithm 3.1 has to be executed on the new programs to determine their
effective code. This approach does not affect the effective variation step
size but only the rate of effective variations.

The effectiveness of crossover operations may already be guaranteed by se-
lecting segments that hold at least one effective instruction. This crossover
variant is called effective deletion (abbr. effdel). An exchange of identical
effective pieces of code is not prohibited by this operator, but it will be
less likely if the average length of exchanged segments is large.

5.7.5 Segment Mutations

The implementation of crossover/recombination operators we apply in this
book always produces two offspring. To be able to compare the effects of
crossover and mutation two individuals are always selected in our LGP
Algorithm 2.1 for producing offspring, even with mutation.

One-segment recombination, as described by Algorithm 5.3, can be mod-
ified to serve as two variants of macro mutation operators. One-segment
mutation is done by the insertion of a randomly created subsequence s of
l(s) instructions in Step 2(d) of Algorithm 5.3. In doing so, the maximum
length of an inserted or deleted segment is still limited by the length of
the other parent. This guarantees that the mutation operator is free from
an explicit length bias, i.e., the average inflow of code into the population
is not larger than the outflow.

Effective segment mutation is done by inserting a fully effective segment,
i.e., by inserting l(s) effective instructions at a position i as will be de-
scribed in Section 6.2.3. Deleted segments must not be completely effec-
tive and may still contain noneffective instructions. As a result, the pro-
portion of noneffective code will be reduced. Note that, on a functional
level, an effective segment does not necessarily form a single contiguous
component for itself even if all segment instructions are connected to the
effective graph component.

Another approach to effective (two-)segment mutation may be based on
linear crossover. In this variant random segments replace existing seg-
ments. In the following the resulting four different variants of segment
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mutation will be referred to as onesegmut, effonesegmut, segmut and eff-
segmut.

5.7.6 Explicit Introns

The ratio of noneffective instructions to the total amount of code controls
the influence of segment variations on the effective part of code. Because
there is usually a maximum limit to program length this implicit control
of effective step size may not prove sufficient. Inactive instructions can
be easily reactivated if transferred from one individual into another. The
effectiveness of inserted instructions depends strongly on their position
and the context in which they are in the new program. It is very likely that
this will be totally different from the original program and the protection
effect of noneffective code can therefore be considered as rather weak.

One solution to this problem is to provide for special program elements
that already represent intron code for themselves. In [92] we have intro-
duced the idea of explicitly defined introns (EDIs) into linear GP. This
stand-alone intron code does not depend on a special semantic or struc-
tural program context. Explicit introns are supposed to suppress the
emergence of implicit introns in the course of a run. At the same time,
they reduce the absolute program size which shall include only the op-
erational (non-EDI) instructions here. In the presence of explicit introns
there is less need for inducing implicit intron code. Explicit introns are
not only more easily implemented in program code by evolution but are
less brittle during manipulation by the genetic operators, too.

The higher proportion of noneffective code that occurs particularly with
crossover, indirectly increases the size of effective code. Obviously, the
more code that is inactive, the higher the probability for reactivation dur-
ing a genetic operation. Thus, the more programs grow, the more difficult
it becomes to maintain a small effective code size. If sufficient implicit
introns are replaced by context-independent explicit introns, however, we
may hope that a smaller (proportion of) effective code is possible.

In [92] an explicitly defined intron has been implemented by a separa-
tor that is held between all coding instructions in a linear program. The
non-coding separators just include a mutable integer value n which rep-
resents a “virtual” sequence of n wildcards or empty instructions. During
crossover the EDI value between two working instructions determines the
probability that the crossover point falls between them. Crossover behaves
just as if EDIs were real empty instructions. After crossover has been per-
formed the EDI values at crossover points are updated accordingly in the
offspring programs.
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A different realization of explicit introns is demonstrated in [122] by in-
cluding a special EDI function into the function set. Such functions ig-
nore all its arguments except one which is returned unaltered – similar to
branches that hold a condition which is always wrong. In tree-based GP
this is necessary because the program structure requires that every node
returns a value. All subtrees that are ignored represent inactive code, but
may be reactivated after a crossover operation or if the EDI function is
replaced by an effective node.

We investigate explicit introns here for linear GP in a simpler form than
that in [92]. In our approach an EDI comprises a single empty instruction
only and is “physically” evolved within imperative programs. Empty in-
structions neither perform an operation on register values, nor manipulate
the content of registers. By definition, an empty instruction is not allowed
to be changed. Neither can it be reactivated nor can a working instruction
be transformed into an empty one. This would require a mutation oper-
ator that is restricted to coding instructions only. During initialization
a certain percentage of empty instructions are seeded into a population
of coding instructions. In this way, it is guaranteed that only crossover
determines how the proportion of EDIs develops in the population during
a run. Such “imperative” EDIs are defined on the imperative level only
and have no equivalent on the functional level.

5.7.7 Building Block or Macro Mutation?

One of the questions frequently asked when comparing the effects of mu-
tation with those of recombination, is whether recombination does indeed
help as much as it was originally thought it would. Recombination clearly
depends strongly on the composition of the population. But do building
blocks in programs really exist?

Intuitively, GP individuals are composed of building blocks [50, 41, 64].
A building block may be any coherent fraction of program code, i.e., an
arbitrary subtree in tree-based GP or a subsequence of instructions in
linear GP. The building block hypothesis for general evolutionary algo-
rithms has been adopted from genetic algorithms into genetic program-
ming [107, 108]. It states that smaller substructures of individuals with
a high positive effect on fitness will be combined via crossover to pro-
duce offspring with higher fitness, and that, thus, the frequency of these
substructures increases in the population.

One problem with the building block hypothesis is the assumption that
GP is able to decompose a problem into subproblems and to develop global
solutions by composing partial solutions. Subprograms are to be relatively
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independent from each other and are to have an additive influence on the
fitness, i.e., the fitness function ought to be separable to a certain degree.

What are we to do with the fact that in GP the fitness advantage or
disadvantage of a certain piece of code strongly depends on its position
within the program? The usually complex interaction of registers in linear
GP reduces the possibility that a subprogram may behave similarly in
another program context. Depending on the number of available registers,
as well as the length of the subsequence this would require many nodes to
be reconnected appropriately in the functional graph equivalent. However
in actuality, de- or re-activation of instructions may easily destroy the
functionality of building blocks.

If the building block hypothesis would not be valid, recombination would
act as simply another macro mutation, restricted however, to inserting
genetic material already present in the population. In that case, one
might expect an open macro mutation to do better. However, even if
the building block hypothesis were true for a certain recombination-based
GP approach, nothing precludes a pure mutation-based approach to exist
that performs equally as well or better. A qualified answer to whether
recombination or mutation is more powerful might be given depending on
criteria like the (average) variation step size and the degree of innovation
that is induced by a genetic operator, to name just two parameters.

Traditional tree-based genetic programming [64] started by using crossover
for the majority of variations. The role of mutation was initially consid-
ered of minor importance and mutation frequency was adjusted to a low
probability. Later on, however, researchers realized that mutation oper-
ators perform quite well on trees. For instance, Angeline [6] compared
normal crossover with a “crossover” operator where one parent individual
is created randomly. These subtree mutations work mechanically similar
to crossover which allowed a fair comparison. From the competitive per-
formance of subtree mutations Angeline concluded that subtree crossover
was to be more accurately described as a macro mutation. Other com-
parisons of subtree crossover and mutations in tree-based GP [46, 29, 81]
report on similar results. However, to this day the jury is still out. GP
algorithms seem to be remarkably robust to parameter changes, and only
react with strong signals once extreme choices are taken (for example 0%
mutation or crossover).

From what has been observed in the literature, it may be concluded that
mutation-based variation and crossover-based variation in tree GP have
been found competitive with each other. Sometimes one approach was
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slightly more successful than the other, depending on details. Section
5.9.2 will compare recombination and segment mutations in linear GP.

5.8 Experimental Setup

5.8.1 Benchmark Problems

We have now seen an impressive set of different choices available to the
system designer. These different variation operators will be discussed
in this section and compared on the basis of benchmark problems. For
experiments we have chosen (symbolic) regression and classification tasks
throughout most of the book, because many real-world applications may
be reduced to one of these problem classes.

The first problem requires a surface reconstruction from a set of data
points. The surface is given by the two-dimensional mexican hat function
of Equation 5.4.

fmexicanhat(x, y) =
(
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Figure 5.2 shows a three-dimensional plot of the function visualizing the
surface that has to be approximated.
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Figure 5.2. mexican hat problem.

The second problem is the popular spiral classification task [64]. In
this problem, two interlaced spirals have to be distinguished in two-
dimensional data space. All data points of a spiral belong to the same
class as visualized in Figure 5.3.
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Figure 5.3. spiral problem.

5.8.2 Parameter Settings

Table 5.1 summarizes attributes of the data sets that have been created for
each problem. These include input dimension, output dimension, ranges
of input and output values as well as number of training examples or
fitness cases. Furthermore, problem-specific configurations of the LGP
system are given comprising the fitness function, the composition of the
function set, and the number of registers and constants.

It is important for the performance of linear GP to provide enough regis-
ters for calculation, especially if the input dimension is low. Therefore, the
number of (calculation) registers – in addition to the minimum number
of registers that is required for the input data – is an important parame-
ter (see also Section 7.1). Recall that the number of registers determines
the number of program paths that can be calculated in parallel. If that
number is not sufficiently large there may be too many conflicts between
instructions, e.g., by overwriting register content.

For classification tasks the fitness function is discrete and equals the clas-
sification error (CE), i.e., the number of incorrectly classified inputs. For
approximation problems the fitness is the continuous sum of square output
errors (SSE, see Section 2.3).
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Table 5.1. Problem-specific parameter settings.

Problem mexican hat spiral

Problem type regression classification

Input range [−4.0, 4.0] [−2π, 2π]

Output range [−1, 1] {0, 1}
Number of inputs 2 2

Number of outputs 1 1

Number of output classes — 2

Number of examples 400 194

Number of registers 2 + 4 2 + 4

Fitness function SSE CE

Instruction set {+,−,×, /, xy} {+,−,×, /, sin, cos, if >}
Constants {1, .., 9} {1, .., 9}

The spiral problem at hand uses an interval classification method, i.e., if
the output is smaller than 0.5 the answer of the program is interpreted as
class 0, if it is equal or larger it is interpreted as class 1.

The instruction set used for the classification problem includes branches.
The instruction set for the mexican hat problem is intentionally chosen to
be incomplete, i.e., insufficiently powerful to build the optimum solution.
In particular, the exponential function ex was not included. Because the
constant e is an irrational number it may only be approximated by a finite
number of program instructions.

The general configuration of our linear GP system is given in Table 5.2. If
not otherwise specified, this configuration is used in all experiments. As
mentioned before, two tournament winners are either recombined or un-
dergo mutation in Algorithm 2.1. Tournament selection is applied with a
minimum of two participants per tournament and winning parents always
replace losers.

Table 5.2. General parameter settings.

Parameter Setting

Number of generations 1,000

Population size 1,000

Tournament size 2

Maximum program length 200

Initial program length 5–15

Macro variation rate 75%

Micro mutation rate 25%

Reproduction rate 100%
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In most experiments in this chapter, macro operators are applied with a
probability of 75 percent. This guarantees that the operators of interest
for the comparison dominate the variation process. On the other hand,
variation inside instructions is not reduced to zero but is maintained at
25 percent micro mutation probability.

For all problems we use a maximum number of 200 instructions. This
has proven to be a sufficiently large size to represent the optimal solution
provided that the function set is complete. This choice allows all operators
tested to reach similar effective program sizes during 1,000 generations –
including segment operators and instruction operators (see next chapter).

5.9 Experiments

All variation operators discussed so far involve single contiguous instruc-
tion segments. We will now take a look at experiments that have been
conducted with such segment operators, both for recombination and seg-
ment mutation.

5.9.1 Comparison of Recombination Operators

In Tables 5.3 and 5.4 the different approaches to recombination operators
are compared in terms of their influence on prediction performance, code
growth and the probability distribution of variation effects. The mean
prediction error is calculated over 100 independent runs, together with the
statistical standard error. The number of hits is not given here because the
optimal solution (fitness 0) has almost never been found by any crossover
operator within a period of 1,000 generations. Both benchmark problems,
spiral and mexican hat, show similar behavior in this regard. In order to
reduce noise introduced through unequal initial populations, each test
series is performed with the same set of 100 different random seeds.

Program length is averaged over all programs created during a run and in
all 100 trials. Thus, the average effective program length gives more pre-
cise information about the average calculation time necessary for execut-
ing a program. Recall that the effective length corresponds to the number
of instructions executed in our system (see Chapter 3.2.1). The propor-
tion of effective code peff is given in percent with pnoneff = 100 − peff

being the percentage of structural introns.

Absolute length labs includes all instructions while effective length leff

counts only instructions that are effective. As indicated in Section 5.7 the
ratio of effective length and absolute length leff

labs
is an important parameter

when using linear crossover. It determines the average number of effective
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Table 5.3. mexican hat: Comparison of different recombination operators and config-
urations. Average results over 100 runs after 1,000 generations.

Operator Config. SSE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

cross 15.4 1.5 180 67 37 4.9 26 22

effinit 13.3 1.4 178 65 37 5.0 26 22

effdel 14.3 1.4 171 68 34 5.9 22 18

onepoint 21.9 1.3 188 66 35 2.8 78 69

oneseg 12.1 1.3 158 57 36 4.5 27 24

effcross 26.9 2.5 51 51 100 6.6 32 9

effinit 6.1 0.8 111 111 100 9.4 12 1.8

Table 5.4. spiral: Comparison of different recombination operators and configurations.
Average results over 100 runs after 1,000 generations.

Operator Config. CE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

cross 26.1 0.7 185 102 55 3.6 23 14

effinit 24.3 0.7 183 104 57 3.5 24 14

effdel 25.2 0.7 184 95 51 4.5 20 12

onepoint 32.0 0.9 190 89 47 0.9 81 32

oneseg 24.0 0.8 164 85 52 2.5 26 18

effcross 26.0 0.7 162 162 100 4.0 22 2.4

effinit 18.8 0.7 164 164 100 3.9 20 0.6

instructions that may be deleted or selected from a parent program. This,
in turn, influences the average effective step size as defined in Section 5.3.

Additionally, Tables 5.3 and 5.4 show the average proportion of measured
constructive, neutral and noneffective variation (see Definition 5.1) effects
among all variations during a run. The rates of destructive and effective
variations, respectively, are obvious then.

Two-point crossover (cross) performs better than one-point crossover (one-
point). Interestingly, even if the average (absolute) step size is larger with
only one crossover point per individual, a much higher proportion of op-
erations is neutral. In the case of the mexican hat problem most of these
variations are noneffective, i.e., do not alter the effective solution. Since
the end points of segments are always the same, an exchange of (effec-
tively) identical segments becomes much more likely.

Only slightly better results are obtained with one-segment recombination
(oneseg) compared to standard crossover. We argued in Section 5.7.3
that those may reduce the variation step size. However, since the pro-
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gram size grows similarly large on average and because segment length is
unrestricted with both variants, this effect may be less relevant here.

The effective crossover variant effcross is implemented in such a way that
the (structural) noneffective code is removed completely after each varia-
tion (see Section 5.7.4). In doing so, only effective code finds its way into
the population while deletions of instruction segments as well as all micro
mutations automatically become effective.

One explanation why noneffective code grows with crossover may be found
in a reaction of the system to protect the effective code from larger de-
structions (see also Chapter 10). A lack of structural introns in the popu-
lation may be counteracted by a larger effective code only if the problem
definition allows a sufficient amount of semantic introns (to be part of
the effective code). Otherwise, a protection of the (semantically) effective
code will be insufficient and the resulting larger effective crossover step
size renders a continuous improvement of solutions more difficult.

As already noted, the ability to create semantic introns strongly depends
on the configuration of the instruction set. On the other hand, a sufficient
replacement depends on how far the search process profits from a growth of
effective code. In contrast to the mexican hat problem, the discrete spiral
problem allows good solutions to incorporate a relatively large amount
of effective code. This is facilitated by using branching instructions that
offer additional potential for creating semantic intron code (see Section
3.2.2).

Figures 5.4 and 5.5 compare the development of average length and av-
erage effective length in the population for both test problems. We just
note here that the length of best solutions – if averaged over multiple runs
– develops almost identically to the average length.

The standard deviation of effective length in the population is smaller
than 10 instructions on average (not specified in Tables 5.3 and 5.4). One
reason for the small standard deviation is the early restriction of (absolute)
code growth for this genetic operator by the maximum size limit. As
one can see, program growth is significantly reduced for mexican hat in
effcross runs. Actually, absolute programs do not even become as long here
as the effective code in cross runs. For the spiral classification, instead,
the permanent loss of (noneffective) code is much better compensated
by semantic intron code. The average program size nearly reaches the
maximum length just like in runs with normal crossover.

The mexican hat results demonstrate that the existence of structurally
noneffective code in linear GP offers an advantage over semantic introns
because the former may be created more easily by evolution and be inde-
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Figure 5.4. mexican hat: Development of absolute program length (left) and effective
program length (right) for different crossover operators. Code growth significantly
reduced by removing the noneffective code. Average figures over 100 runs.
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Figure 5.5. spiral: Development of absolute program length (left) and effective pro-
gram length (right) for different crossover operators. Removal of structural introns
compensated by more semantic introns. Note that absolute length and effective length
are the same with effcross. Average figures over 100 runs.

pendent from the function set. In other words, the emergence of semantic
intron code is suppressed in the presence of structural introns. The struc-
turally noneffective code reduces the size of effective programs (implicit
parsimony pressure, see also Section 8.4.1).

Furthermore, Figure 5.4 reveals that the removal of noneffective code is
especially destructive at the beginning (first 50 generations) of an effcross
run where effective solutions are most brittle since they have not devel-
oped a sufficient (effective) size for compensation yet. Programs become
so small after the first generation that many are structurally identical –
and even more programs are semantically identical. That is, the initial
loss of code is accompanied by a high loss of diversity in the population.
Hence, it is not surprising that the effective crossover variant profits much
more from an effective initialization (effinit, see also Section 7.6) in terms
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of the prediction quality than is found with normal crossover. Effective
initialization means that the initial programs are created such that they
are completely effective while the absolute amount of genetic material
stays the same. Due to this special form of initialization the program size
probably doubles in Figure 5.4 because semantic introns are created in
sufficient numbers. With the spiral problem, by comparison, the initial
phase of code loss is much shorter (see Figure 5.4).

There is a small proportion of noneffective operations left that occurs
with the effcross variant in Tables 5.3 and 5.4. This may result from the
exchange of segments which are (effectively) identical. Such a situation
becomes particularly likely if programs and segments comprise only a few
instructions or if many programs are identical at the beginning of a run.

If it is just ensured that crossover operations are effective, i.e., delete at
least one effective instruction (effdel), only slightly better results have been
found compared to the standard approach. Because of the large absolute
step size of crossover, we may assume that most crossover variations are
effective anyway.

In general, the different crossover operators and configurations performed
more similarly than what might have been expected. One reason is the
maximum segment length (and thus the maximum step size) that is re-
stricted by the program size only. Programs, however, grow similarly large
for most recombination operators even without this growth control (see
Chapter 10).

5.9.2 Comparison with Segment Mutations

Tables 5.5 and 5.6 summarize the results obtained with segment muta-
tions. Recall that variant segmut replaces an instruction segment by a
random segment of arbitrary length while the onesegmut variant deletes
segments and inserts random ones in separate genetic operations. From
a technical point of view, the first variant operates similar to standard
crossover (cross) while the latter variant corresponds to one-segment re-
combination (oneseg).

All segment operators compared in this chapter are unbiased in terms of
the program length, i.e., do not promote code growth. That means with-
out fitness pressure (flat fitness landscape) there would be no relevant
increase of program length. Therefore, and for the purpose of a fair com-
parison with recombination, segment mutations have been implemented
in Section 5.7.5 such that the maximum segment length of both insertions
and deletions depends on the length of programs in the population. This,
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Table 5.5. mexican hat: Comparison of different segment mutation operators. Average
results over 100 runs after 1,000 generations.

Operator SSE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

segmut 12.6 1.3 72 28 39 5.1 26 18

effsegmut 4.1 0.3 31 23 76 7.6 19 6

onesegmut 4.2 0.5 92 38 42 4.6 26 21

effonesegmut 2.0 0.1 43 32 74 7.3 19 8

Table 5.6. spiral: Comparison of different segment mutation operators. Average re-
sults over 100 runs after 1,000 generations.

Operator CE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

segmut 27.3 0.7 121 61 50 3.3 25 15

effsegmut 28.1 0.7 35 29 82 5.3 18 4

onesegmut 21.2 0.6 126 65 51 2.4 27 19

effonesegmut 19.1 0.5 67 54 81 4.1 18 4

however, guarantees similar segment lengths and step sizes as recombina-
tion only if programs grow similarly large.

It is an important result that recombination does not perform better than
segment mutations here. Recall from the discussion in Section 5.7.7 that
this may be taken as an argument against the building block hypothe-
sis. Interestingly, with two-segment mutations (segmut) the prediction
performance is hardly different from crossover. One-segment mutation
(onesegmut) shows even improvements over one-segment recombination,
especially for the mexican hat problem. As noted above, mexican hat is
better solved with a reduced growth of programs, in contrast to the spiral
problem.

The better performance of one-segment mutation compared to two-
segment mutations may result from the absolute step size of two-segment
variations (twice as large according to Definition 5.3). One-segment and
two-segment mutations have a more pronounced difference in prediction
error than the two corresponding recombination operators of Section 5.9.1.
Note again that the average step size of segment mutations is smaller al-
ready because of a significantly smaller size of solutions. Moreover, results
may be only slightly different beyond a certain average step size.

It is an interesting question why smaller effective programs occur with
segment mutations than with recombination although in both cases the
segment size is limited by the program size only. Possible reasons for this
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will be discussed in Section 10.8.1. We only note here that the difference
in program size will increase if a maximum program length larger than
200 instructions is used since recombination is much more influenced by
this choice.

A slightly better performance but definitely smaller solutions are obtained
if it is explicitly guaranteed that each instruction of an inserted segment
is created effective (effonesegmut). On the one hand, this reduces the rate
of noneffective (and neutral) variations. Noneffective variations still occur
with a small probability because of the 25 percent free micro mutations
that are applied, together with each macro operator. Only some noneffec-
tive operations may result from segment deletions, since it is not explicitly
guaranteed that deletions are effective.

On the other hand, the proportion of noneffective instructions is signif-
icantly smaller compared to a standard segment mutation. Hence, the
effective step size may hardly be reduced by a higher rate of structural
introns in programs. First, noneffective instructions are not directly cre-
ated here, but may occur only indirectly by deactivations of depending
instructions. Second, deleted segments may still contain noneffective in-
structions while inserted segments are fully effective. This corresponds to
an explicit shrink bias in terms of the noneffective code.

When using effective two-segment mutations (effsegmut) code growth is
even more reduced than with effective one-segment mutations (effoneseg-
mut). The former operator allows noneffective code to be replaced by
effective code but not vice versa. Performance is again improved signif-
icantly for mexican hat. As for the spiral problem, code growth may be
restricted too much to let more efficient solutions emerge.

But why is the program length not increased by semantic introns here, as
this has been observed with effective crossover (effcross) above? Appar-
ently, the creation of both semantic and structural introns is much more
limited when using (effective) segment mutations (see also Section 10.8.1).

5.9.3 Crossover Rate

In Section 5.8 we have decided to use a configuration of variation rates that
assigns 75 percent to macro variations and 25 percent to micro mutations.
Our motivation was that the variation should be dominated by the macro
operators under comparison while still allowing enough modifications to
happen inside instructions (micro mutations).

Tables 5.7 and 5.8 compare results for different crossover rates pcross in
percent while the percentage of micro mutations is pmicromut = 100−pcross,
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respectively. Only one variation is applied at a time, i.e., between two
fitness evaluations. The more micro mutations there are, the smaller the
average step size becomes, but the more variations remain noneffective
and neutral. The advantage of smaller step sizes seems to outweigh the
disadvantage of less effective variations, though. In both problem cases,
the best performance has been achieved with the smallest crossover rates
(10 percent). Although only a few macro variations are responsible for
code growth, program size is still almost the same. This is basically a
result of the large unlimited step size of crossover.

Table 5.7. mexican hat: Comparison of different crossover rates (in percent). Average
results over 100 runs after 1,000 generations.

Crossover (%) SSE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

10 9.0 1.2 121 54 45 1.5 46 44

25 12.7 1.5 150 64 43 1.8 42 40

50 13.8 1.4 170 64 38 2.7 36 33

75 15.4 1.5 180 67 37 4.9 26 22

100 23.5 1.4 182 48 26 6.1 27 22

Table 5.8. spiral: Comparison of different crossover rates (in percent). Average results
over 100 runs after 1,000 generations.

Crossover (%) CE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

10 14.9 0.7 142 88 62 0.6 42 30

25 17.6 0.7 164 99 60 0.9 39 27

50 23.0 0.7 178 99 56 1.9 31 22

75 26.1 0.7 185 102 55 3.6 23 14

100 34.5 0.6 187 98 53 5.8 17 8

The reader may note that there is a particularly large decrease in perfor-
mance if crossover is applied exclusively compared to using micro muta-
tions with their usual rate of 25 percent. Crossover can only recombine
program components (instructions) that already exist in the previous gen-
eration but does not introduce new instructions. By the influence of selec-
tion and reproduction, however, the concentration of certain instructions
may be reduced significantly which can be avoided already by applying
mutations with a small percentage.
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5.9.4 Analysis of Crossover Parameters

Linear crossover has been defined as the mutual exchange of a contiguous
sequence of instructions between two individual programs in Section 5.7.1.
In the following we analyze the influence of three crossover parameters

� Maximum length of segment

� Maximum difference in segment length

� Maximum distance of crossover points

on prediction performance, program growth and variation effects. Let
the term crossover point always refer to the first absolute position of
a segment. All actual length and distance quantities are measured in
instructions and are uniformly distributed from the respective maximum
range.

Tables 5.9 and 5.10 show the results of different maximum thresholds for
the segment length, ranging from two6 instructions to all instructions of
a program, i.e., from maximum to no restrictions.

For both problems, mexican hat and spiral, the best fitness has been found
if at most 5 instructions are allowed to be exchanged. Especially in the
case of the spiral problem the growth of programs seems to be too re-
stricted with segment length 2 to develop competitive solutions.

Basically, the relative influence on the fitness decreases with larger maxi-
mum segment length because of the following reasons. First, the average
segment length is relatively small even for unrestricted two-point crossover
– about 25 percent of the program length on average. Second, because of
a virtually linear data flow, the influence of the segment length may be
proportional to the program length only to a certain degree (see also Sec-
tion 10.7.6). Finally, code growth is reduced significantly only when using
relatively small upper bounds for the segment length. Due to restrictions
by the maximum program length there is no significant difference in the
program length beyond a certain maximum segment length any more. As
noted before, a reduction of program length indirectly influences the av-
erage segment length again since a segment may not be larger than the
program from which it originates.

The rate of effective code decreases with the maximum segment length,
i.e., the rate of noneffective code increases. Since smaller segments mean

6Code growth would not be possible with maximum segment length 1 since crossover exchanges,
by definition, include at least one instruction.
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Table 5.9. mexican hat: Effect of maximum segment length using crossover (cross).
Average results over 100 runs after 1,000 generations.

Maximum SSE Length Variations (%)

Segment Length mean std. abs. eff. % constr. neutral noneff.

2 4.3 0.6 50 31 63 3.8 29 26

5 3.5 0.5 107 50 47 3.5 31 28

10 8.5 1.2 146 58 40 3.6 31 28

20 10.9 1.3 169 65 38 3.9 30 26

50 13.3 1.3 177 65 37 4.5 27 24

– 15.4 1.5 180 67 37 4.9 26 22

Table 5.10. spiral: Effect of maximum segment length using crossover (cross). Average
results over 100 runs after 1,000 generations.

Maximum CE Length Variations (%)

Segment Length mean std. abs. eff. % constr. neutral noneff.

2 17.4 0.6 54 38 70 1.6 29 21

5 12.8 0.6 125 77 61 1.7 33 20

10 18.8 0.6 166 99 60 2.0 29 18

20 22.0 0.7 180 102 56 2.7 26 17

50 24.8 0.7 185 103 56 3.2 24 15

— 26.1 0.7 185 102 55 3.6 23 14

smaller absolute step sizes there is less need to reduce the effective step
size of crossover by developing more intron code (see also Chapter 10).
In other words, less noneffective instructions need to be inserted together
with the same number of effective instructions. It is interesting to note
that the rates of noneffective and neutral variations are less affected in
Tables 5.9 and 5.10 by comparison.

These results imply that the average variation step size of unrestricted
standard crossover is too large. A strong restriction of the segment length,
on the other hand, may not be regarded as real crossover any more. At
least, the idea of combining advantageous building blocks from different
programs may be questioned if the building blocks only comprise a few
effective instructions.

For the following considerations we assume that segment length is unre-
stricted again. Instead, we limit the maximum difference in length be-
tween the two crossover segments exchanged. To this end, we select one
segment freely in one of the parents. The position of the second segment
is selected without restrictions from the other parent. Only for the length
of this segment it is guaranteed that a maximum distance from the length
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Table 5.11. mexican hat: Effect of maximum difference in segment length using
crossover (cross). Average results over 100 runs after 1,000 generations.

Max. Segment SSE Length Variations (%)

ΔLength mean std. abs. eff. % constr. neutral noneff.

1 3.6 0.5 48 29 60 5.4 24 21

2 4.4 0.7 77 41 54 5.2 25 22

5 7.7 1.1 124 56 45 5.2 24 21

10 10.1 1.2 159 61 39 5.0 25 22

20 13.7 1.4 175 65 37 4.9 25 22

50 15.4 1.4 183 66 36 4.9 26 23

– 15.4 1.5 180 67 37 4.9 26 22

Table 5.12. spiral: Effect of maximum difference in segment length using crossover
(cross). Average results over 100 runs after 1,000 generations.

Max. Segment CE Length Variations (%)

ΔLength mean std. abs. eff. % constr. neutral noneff.

1 20.8 0.6 56 41 73 3.6 22 14

2 18.5 0.7 91 63 69 3.6 23 13

5 20.6 0.7 151 91 60 3.4 25 15

10 23.3 0.7 173 97 56 3.6 24 15

20 24.6 0.6 182 100 55 3.5 24 15

50 25.5 0.6 186 101 55 3.6 23 15

— 26.1 0.7 185 102 55 3.6 23 14

of the first segment is not exceeded. In this way, a form of size fair linear
crossover is implemented in linear GP (see also Section 5.7.1).

Tables 5.11 and 5.12 may be interpreted in such a way that a smaller
maximum difference in segment length reduces the crossover step size in a
similar way, as this resulted from using a smaller maximum segment length
above. Apparently, the more similar the length of exchanged segments is
the less programs can increase in length during a crossover operation.

In conclusion, the potential speed of code growth depends on both the size
and the difference in size of the exchanged code fragments. However, while
an exchange of very small segments may hardly be regarded as crossover,
a size fair implementation can be. Size fair crossover is even more closely
related to crossover in nature where recombined DNA strings are not only
of a similar length but happen at similar positions (crossover points), too.
Langdon [72] found that both, size fair and homologous crossover reduce
bloat in tree genetic programming. Platel et al. [104] confirmed for linear
genetic programming that homologous crossover gives size control.
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Table 5.13. mexican hat: Effect of maximum distance of crossover points (cross). Av-
erage results over 100 runs after 1,000 generations.

Maximum SSE Length Variations (%)

Point Distance mean std. abs. eff. % constr. neutral noneff.

0 25.1 1.3 184 60 33 1.5 82 75

2 21.3 1.4 182 79 43 3.3 50 45

5 20.2 1.4 181 77 43 3.8 41 37

10 19.4 1.5 181 80 44 4.5 33 30

20 18.5 1.5 180 75 42 4.4 31 29

50 17.1 1.4 180 71 40 4.4 29 27

– 15.4 1.5 180 67 37 4.9 26 22

Table 5.14. spiral: Effect of maximum distance of crossover points (cross). Average
results over 100 runs after 1,000 generations.

Maximum CE Length Variations (%)

Point Distance mean std. abs. eff. % constr. neutral noneff.

0 26.7 0.7 186 90 49 0.5 82 47

2 22.6 0.8 183 87 47 1.6 52 30

5 21.5 0.6 182 98 54 2.0 41 24

10 20.3 0.6 182 98 54 2.2 36 22

20 22.5 0.7 181 100 55 2.6 32 20

50 25.7 0.6 185 103 55 2.9 28 18

— 26.1 0.7 185 102 55 3.6 23 14

The distance of crossover points is investigated in the next experiment
(see Tables 5.13 and 5.14).

Different maximum distances of crossover points in the two parent in-
dividuals have been tested. In contrast to other crossover parameters,
results are more different here for the two test problems. While mexican
hat is clearly better solved without such a restriction of variation freedom,
the spiral problem seems to profit slightly from more similar positions of
crossover points. If crossover points are selected below a certain optimum
distance, however, the prediction error increases again. Apparently, if the
emphasis is on equal positions, evolution will be significantly restricted in
its ability to move code fragments from one program region to another.
This may lead to a loss of code diversity among the population individu-
als. We may conclude that a free choice of crossover points in both parents
is important

Compared to the two other parameters, the maximum distance of
crossover points has a lower impact on the (effective) program size. In-
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stead, the rate of noneffective (and thus neutral) variations increases sig-
nificantly if the crossover points are chosen more similarly or even equal
with distance 0. This is a direct consequence of the fact that the diver-
sity of effective code is negatively affected because effectively identical
segments are exchanged with high probability. Similar observations have
been made with one-point crossover in Section 5.9.1 where the end points
of segments – in contrast to the starting points – were always identical.

Consequently, only if both smaller differences in segment length and
smaller distances of crossover points have a positive influence on the per-
formance, homologous crossover – which combines both attributes – may
be beneficial. Otherwise, these two criteria may antagonize each other.

5.9.5 Explicit Introns

Many implicit introns in linear genetic programs reduce the number of
effective instructions that can be exchanged by crossover. However, this
positive influence on the effective crossover step size is limited by reactiva-
tions of intron instructions. The higher the intron rate the more probable
it is that such side effects occur. We test whether explicitly defined in-
trons (EDIs, see Section 5.7.6) can provide a more reliable reduction of
effective step sizes.

As mentioned earlier, explicit introns constitute a method for controlling
the number of coding (non-EDI) instructions, i.e, the actual program com-
plexity. Since both implicit structural introns and explicit introns can be
removed efficiently before the fitness calculation in linear GP (see Section
3.2.1) an acceleration of runtime can only result from a smaller effective
size.

We have seen above that the growth of effective code is accelerated sig-
nificantly with crossover if all noneffective instructions are removed im-
mediately after each operation. We concluded that without structural
introns there is more need for expanding the effective code by semantic
introns. While such effective variations necessarily increase the effective
step size, explicit introns have been introduced for exactly the opposite
reason. We may assume that the creation of semantic introns is more sup-
pressed in the presence of explicit introns than this is true in the presence
of structural introns.

In both Tables 5.15 and 5.16 a maximum initialization of individuals with
explicit introns7 reduces the average size of effective code by almost half

7Programs are filled with EDI instructions up to the maximum length.



Segment Variations 115

and produces the best prediction results. Implicit introns emerge less fre-
quently, depending on the amount of empty instructions that is provided
in the initial population. Note that in all configurations the same amount
of non-empty initial instructions is provided (10 instructions on average).

Even though the proportion of effective instructions decreases almost by
half if the initial population has been filled up with explicit introns, intron
segments are not exchanged more frequently. In the first place, this effect
may be credited again to the large unrestricted step size of crossover. As
a result, the rate of noneffective and neutral operations stays practically
the same in Tables 5.15 and 5.16.

Table 5.15. mexican hat: Effect of empty instructions (EDIs) on crossover (cross).
Number of empty instructions in an initial program equals n times the number of
non-empty instructions (10 on average). Average results over 100 runs after 1,000
generations.

Initial EDIs SSE Length EDIs Variations (%)

n × 10 mean std. abs. eff. % # % constr. neutral noneff.

0× 15.4 1.4 180 67 37 — — 4.9 26 22

1× 11.4 1.3 186 50 27 73 39 4.9 26 22

2× 8.5 1.1 190 42 22 102 54 4.8 26 23

4× 7.5 1.1 194 37 19 123 63 4.8 26 23

max 5.6 0.7 200 30 15 147 74 4.5 28 25

Table 5.16. spiral: Effect of empty instructions (EDIs) on crossover (cross). Number
of empty instructions in an initial program equals n times the number of non-empty
instructions (10 on average). Average results over 100 runs after 1,000 generations.

Initial EDIs CE Length EDIs Variations (%)

n × 10 mean std. abs. eff. % # % constr. neutral noneff.

0× 26.1 0.7 185 102 55 — — 3.6 23 14

1× 25.4 0.7 190 75 40 57 30 3.4 23 16

2× 24.2 0.7 193 67 35 84 44 3.3 23 15

4× 22.2 0.7 195 59 30 100 51 3.3 24 18

max 18.1 0.6 200 54 27 121 61 2.7 24 16

The larger the initial programs are, the more quickly the average program
size grows to the maximum (see Figure 5.6). This is simply due to the fact
that the absolute step size of crossover increases in proportion to absolute
program size. As long as programs grow, the step size grows, too. Only
after code growth has terminated by reaching maximum length limits,
average absolute step size remains constant.

If empty instructions are seeded additionally into the initial population
the effective step size decreases for two reasons: First, the more explicit
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introns are provided initially, the less implicit structural introns have to
emerge and the smaller may be the proportion of (structurally) effective
code due to less semantic introns. Second, the effective step size may not
be indirectly increased by reactivations of introns, if these comprise empty
instructions.

Figure 5.6 illustrates the development of average program lengths and
average intron rates in the population for different initial amounts of ex-
plicit introns. Without using explicit introns the implicit structural in-
trons grow quickly at the beginning of a run until the absolute program
length is (almost) maximum. After that point has been reached in about
generation 200 the noneffective code decreases slowly towards the end of
a run due to the effective code still growing and replacing noneffective
instructions. If explicit introns are provided the proportion of implicit
introns shrinks. For the maximum initialization, the implicit intron rate
reaches only about 10 percent of the maximum possible length at the end
of runs with both test problems.

The more explicit introns are provided in initial programs, the smaller the
effective code develops. Like implicit structural introns, such introns take
away pressure from the effective code to grow and to develop semantic
introns (see Section 5.9.1). Recall that semantic introns are in general
more difficult to create, depending on the problem configuration. How-
ever, since explicit introns are by definition fully independent of both the
structural and semantic program context they allow the size of effective
code to be more independent from the absolute program size.

Explicit introns affect the final effective program size less at the end of
a run. Note that the effective size is more strongly determined by a
program’s ability to solve a certain problem task, i.e., by its fitness. Nev-
ertheless, the effective code grows almost linear over the generations with
maximum initialization.

At the beginning of a run implicit structural introns spread within the
population about as fast as explicit ones if their initial numbers are the
same, see “1×” plots in Figure 5.6. Later both types coexist during the
whole run. Since already structural introns emerge easily in linear GP,
explicit introns are not favored by evolution. In other words, explicit
introns do not displace such implicit introns in the course of a run. Thus,
it is important to provide a high amount of explicit introns right from the
start.
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Figure 5.6. mexican hat (left), spiral (right): Development of program lengths and
intron rates over the generations and for different initial amounts of explicit introns
(n × 10).
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5.10 Summary and Conclusion

In the beginning of this chapter we defined different structural and seman-
tic variation effects and step sizes for the linear program representation.
Ten features of variation operators were formulated that we believe are
especially desirable for linear GP. A systematic analysis of possible genetic
operators was then executed that is based on these concepts. Different
operators were introduced and compared with respect to performance
and complexity of the resulting prediction models and variation-specific
parameters were analyzed.

The most important results may be summarized as follows:

� Three basic parameters of linear crossover were identified and analyzed.
Either a restriction of segment length or the difference in length between
inserted and deleted segments (size fair crossover) led to a better perfor-
mance. In both cases, the strongest restrictions produced the best results.
However, it proved to be more deleterious to limit the distance of crossover
points and thus the position of segments.

� Unrestricted segment mutation turned out to be at least as power-
ful as unrestricted recombination and produced less complex solutions.
Furthermore, the difference in performance was smaller for two-segment
operators than for one-segment operators, in particular for mutations and
due to smaller step sizes. Segment mutations operated even more suc-
cessfully if segments are created fully effective. This resulted from their
further reduction of both noneffective variations and program size. The
larger effective step size was partly relaxed by the smaller program size
which indirectly reduces absolute step size.

� As far as segment variations like crossover were concerned, the presence
of structural introns reduced the effective step size and took away some of
the pressure to grow and to develop semantic introns. For validation pur-
poses, we removed all structural introns from individuals after crossover.
Without such an implicit parsimony effect, the (effective) solution size
grew much larger than necessary.

� Explicit introns provided a more reliable reduction of effective crossover
step size than implicit introns because they would not be reactivated.
Both a better fitness and a smaller effective size of solutions were achieved
depending on the amount of such empty instructions that are seeded into
the initial population. Furthermore, implicit introns – including both
structural and semantic ones – occurred much less often in the presence
of explicit introns.



Chapter 6

LINEAR GENETIC OPERATORS II –
INSTRUCTION MUTATIONS

The experimental results from Chapter 5 have confirmed two important
assumptions. First, when using recombination best results were obtained
with a relatively low limit to segment length. Second, segment recombi-
nation has not been found to be more powerful than segment mutation.
Both aspects motivate the use of mutations that affect one instruction
only. The following considerations try to point out why linear programs
in particular are likely to be served better by using only minimal mutation
operations.

6.1 Minimum Mutation Step Size

Why do small variation steps promise better results in genetic program-
ming? For one reason, small variation steps allow a more precise approxi-
mation of a problem by the genetic programs. This is due to the fact that
small structural step sizes imply small semantic step sizes, at least with
high probability. This is called weak causality (see Section 5.4).

Nevertheless, even changing a genetic program in the smallest possible
way might still induce large semantic changes. It is therefore unlikely
that the global search progress will slow down substantially by too small
of a step size. This must be seen for Genetic Programming in contrast to
other evolutionary algorithms, like evolution strategies, that operate on a
numeric representation in continuous search space.

Using small variation steps in GP better correspond to the biological
example, too: Most mutations in nature affect only small parts of the
genotype. Due to very good alignment (homologous crossover) and many
identical genes, even the changes caused by crossover of DNA strands are
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following this pattern of behavior. Otherwise it would not be possible for
nature to produce viable offspring with reasonable frequency.

But whereas in nature genotype variations most often result in small
changes of the phenotype, crossover in GP has a different behavior: Most
crossover operations are highly destructive to both the genotype repre-
sentations and the resulting phenotypes, i.e., to program behavior. The
selection of crossover points in both parents as well as size and structure
of the two exchanged substructures are much less constrained in GP. An-
other reason may be that the functionality of building blocks in programs
or sequences of instructions is less dependent on location than is the case
with building blocks of DNA, i.e., genes.

The following arguments are put forward in support for a higher potential
of mutations in linear GP than would be the case in tree-based GP [23, 11].
In particular, there are some basic reasons that lead us to favor very small
mutation step sizes on a linear program structure.

First, already single micro mutations which will exchange a register index
in an instruction, might heavily influence the data flow in a linear program
(see Section 3.3). For instance, several instructions preceding the mutated
instruction may become effective or noneffective. Thus, the effective step
size of an instruction mutation (see Definition 5.4) may involve many
instructions even if the absolute step size is minimal.

Second, the linear program representation can be manipulated with a
high degree of freedom. By definition, graph-structured data flow permits
a higher variability than a tree-based program would have, due to mul-
tiple connections of nodes. This allows for minimal macro variations to
be realizable in each position of the program. In a tree-based program
it is rather difficult to delete or insert a single node at an arbitrary posi-
tion. Complete subtrees might need to be removed during such operations
in order to satisfy the stronger constraints of the tree structure. A tree
structure is therefore less suitable to be varied only by small macro (sub-
tree) mutations, since modification of program parts higher up in the tree
usually involve larger parts of code.

Third, substructures in linear GP do not get lost when deleting or in-
serting an instruction but remain within the imperative representation as
inactive code or as non-visited components of the data flow graph, respec-
tively (see Section 3.3). The existence of structurally noneffective code in
linear genetic programs prevents a loss of genetic material. Code that has
become deactivated in a program through a variation may become active
again already after the next variation.
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Recombination may be less suited for linear GP for the following reasons:

First, in tree-based programs crossover and mutation points can be ex-
pected to have a stronger influence on program semantics if they are closer
to the root (see Section 5.5). In a linear program, however, each position
of an instruction may exert a more comparable influence on program se-
mantics. Recall that the underlying graph representation is restricted in
width through the number of registers provided (see Section 3.3).

Second, the contents of many effective registers are often changed simul-
taneously because of the rather narrow data flow graph of linear genetic
programs. Such a graph will be disrupted easily when applying crossover
resulting in several program paths to be redirected. As a result, crossover
step sizes are, on average, quite large. In tree-based GP, by compari-
son, crossover only affects a single node in the data flow, the root of the
exchanged subtree.

There are, however, facts that mitigate the impact of a crossover event in
linear GP. The effective step size of linear crossover is decreased implicitly
by increasing the proportion of structural introns (see Section 9.7.2). Inac-
tive instructions may emerge at almost every position in a linear program
with virtually the same probability. In tree-based programs the creation
of introns is more restricted, especially at higher node levels, because they
will always depend on program semantics. A further means to reduce the
effect of crossover in linear GP is offered by using a maximum size limit
for instruction segments exchanged.

Various researchers have investigated mutation operators for tree-based
GP (see Section 5.7.7). Chellapilla [29] defines different types of muta-
tion operators for tree programs ranging from the exchange of a single
node (micro mutation) to the exchange of a complete subtree (macro
mutation). His main interest, however, was not a general reduction of
variation step size. Instead, he applied several operators to the same in-
dividual. O’Reilly and Oppacher [98] have minimized the average amount
of structural change as far as possible. Nonetheless, only a compromise
between a restriction of variation freedom and larger step sizes by loss of
code seem to be successful (see also discussion in Section 8.5).

6.2 Instruction Mutation Operators

This section will define all variants of instruction mutations that are con-
sidered in this book. We restrict ourselves to the analysis of macro instruc-
tion mutations. Therefore, unless otherwise stated, the term instruction
mutation refers to macro instruction mutations.
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6.2.1 Macro Mutations

Macro instruction mutations either insert or delete a single instruction.
In doing so, they change absolute program length with a minimal effect
on program structure. That is, they induce a minimum step size on the
level of full instructions, the macro level. On the functional level, a single
node is inserted in or deleted from the program graph, together with all
its connecting edges.

We do not regard macro mutations that exchange an instruction or change
the position of an existing instruction. Both of these variants are on
average more destructive, i.e., they imply a larger variation step size, since
they include a deletion and an insertion at the same time. A further, but
important argument against substitutions of single instructions is that
these do not vary program length. If single instructions would only be
exchanged there would be no code growth at all.

Algorithm 6.1 ((effective) instruction mutation)
Parameters: linear programs gp; insertion rate pins; deletion rate pdel;
maximum program length lmax; minimum program length lmin.

1. Randomly select macro mutation type insertion | deletion with prob-
ability pins | pdel and with pins + pdel = 1.

2. Randomly select an instruction at a position i (mutation point) in
program gp.

3. If l(gp) < lmax and (insertion or l(gp) = lmin) then

(a) Insert a random instruction at position i.
(b) If effective mutation then

i If instruction i is a branch go to the next non-branch instruction
at position i := i + k (k > 0).

ii Run Algorithm 3.1 until program position i.
iii Randomly select an effective destination register rdest(i) ∈

Reff .

4. If l(gp) > lmin and (deletion or l(gp) = lmax) then

(a) If effective mutation then select an effective instruction i (if exis-
tent).

(b) Delete instruction i.

Algorithm 6.1 has a structure similar to Algorithm 5.3. If on average
more insertions than deletions of instructions happen (pins > pdel), this
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will be referred to as an explicit growth bias of the mutation operator.
(pins < pdel) will be referred to as an explicit shrink bias. In our standard
configuration the mutation operator will be bias-free (pins = pdel).

6.2.2 Micro Mutations

Macro variations, in general, control program growth by treating instruc-
tions as atomic. While variation points of macro operators always fall
between instructions, micro mutation points always lie inside an instruc-
tion. Most variation schemes studied in this book apply micro mutations
to change a single component of an instruction.

Algorithm 6.2 ((effective) micro mutation)
Parameters: linear programs gp; mutation rates for registers pregmut, oper-
ators popermut, and constants pconstmut; rate of instructions with constant
pconst; mutation step size for constants σconst.

1. Randomly select an (effective) instruction from program gp.

2. Randomly select mutation type register | operator | constant with prob-
ability pregmut | popermut | pconstmut and with pregmut + popermut +
pconstmut = 1.

3. If register mutation then

(a) Randomly select a register position destination | operand.

(b) If destination register then select a different (effective) destination
register (applying Algorithm 3.1).

(c) If operand register then select a different constant | register with
probability pconst | 1 − pconst.

4. If operator mutation then select a different instruction operator ran-
domly.

5. If constant mutation then

(a) Randomly select an (effective) instruction with a constant c.

(b) Change constant c through a standard deviation σconst from the
current value: c := c + N (0, σconst).

In Algorithm 6.2 three basic types of micro variations are discerned –
operator mutations, register mutations and constant mutations. Unless
otherwise stated, we mutate (exchange) each instruction component with
about the same probability. In particular, we make sure that source and
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destination registers are mutated with the same frequency. The modifi-
cation of either register type may affect the effective status of preceding
instructions. We mentioned in Chapter 3.3.1 that register mutations cor-
respond to a redirection of edges in the functional representation of a linear
program. That is, they manipulate the data flow in linear programs.

Constants may be replaced either by a register or by another constant
depending on the proportion of instructions pconst that hold a constant
value. Throughout this book we allow a constant to be set only if there is
another register operand used by the same instruction (see Sections 2.1.2
and 7.3). That is, an instruction may not hold more than one constant.
Alternatively, separate constant mutations may be applied (pconstmut >
0). Then a constant is selected explicitly from an instruction before it is
modified through a standard deviation (step size) σconst from the current
value.

Because we guarantee for each genetic operator that there is a structural
variation of the program code, identical replacements of code elements are
avoided during micro mutation by Algorithm 6.2.

6.2.3 Effective Mutations

On a statistical basis, fitness neutrality will be more prevalent if macro
mutations can change only a single instruction. Because mutation step
sizes are small, many mutations will remain noneffective, i.e., do not al-
ter the structurally effective code. To compensate for this tendency we
introduce effective instruction mutations which apply mutations on the
effective parts of a linear genetic program. This is motivated by the as-
sumption that mutations of structurally effective instructions may be less
likely to be neutral than mutations of noneffective instructions.

Effective instruction mutations respect the functional structure of a linear
program (see Section 3.3) so that only the effective graph component is
evolved. In other words, information about the functional program struc-
ture is introduced into the genetic operator. The amount of noneffective
code may be affected indirectly only through deactivation of depending
instructions, i.e., through disconnection of formerly effective subgraphs.

Effective micro mutations simply select an effective instruction in Algo-
rithm 6.2. If such an instruction does not exist in the program, the des-
tination register of a random instruction is set effective.

We discern three different approaches to effective macro mutation opera-
tors [23, 11].
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� The standard variant of effective mutations (abbr. effmut) allows (sin-
gle) noneffective instructions to be deleted. In order to guarantee that the
effective code is altered at all, an effective (micro) mutation may directly
follow such intron deletions. However, this may result in further deac-
tivations of depending instructions and, thus, in more noneffective code.
By allowing pure intron deletions, instead, the noneffective code may be
definitely reduced in the course of the evolutionary process.

� The second variant (effmut2) guarantees that both inserted and deleted
instructions always alter the effective code. This implies that noneffective
instructions are prohibited from direct variation.

� In the third variant (effmut3) all emerging noneffective instructions
are deleted from a program directly after applying mutations of variant
effmut2.1 If this would be done after standard instruction mutations, it
was only guaranteed that deletions and micro mutations are effective.

The explicit deletion of an effective or noneffective instruction is not com-
plicated. Since the information about the effectiveness or non-effectiveness
of an instruction is saved and updated in the linear program representa-
tion each time before the fitness calculation, an additional application of
Algorithm 3.1 is not necessary, neither for effective micro mutations nor
for effective deletions.2

If the insertion of an operation is supposed to be effective, however, this
has to be assured explicitly in Algorithm 6.1 by choosing a destination
register that is effective at the instruction position (see Definition 3.3).
Like the detection of effective code, effective registers can be identified
efficiently in linear runtime O(n) by terminating Algorithm 3.1 at the
respective program position.3 An inserted branch instruction may be
effective only if the following operation is effective, too. Otherwise, this
operation will be made effective.

If the program length is minimal, only an insertion is possible. If the
program length is maximal, a deletion is applied next in Algorithm 6.1.
It must be noted, however, that the latter situation hardly occurs (see
Section 6.4). Since programs grow relatively slowly by effective mutations,
the maximum program length may easily be chosen sufficiently large such
that it is not reached within the observed number of generations.

1By removing the structurally noneffective code completely linear GP becomes more similar
to tree-based GP where such (disconnected) code does not exist because each node must be
connected.
2After intron deletions, the effective status of instructions does not have to be recalculated
anyway.
3Then set Reff holds all effective registers for that position.
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There is only one situation remaining where an effective deletion or inser-
tion does not change the effective code. This is the case if an instruction
that is identical to the deleted/inserted one becomes effective/noneffective
at the same position in the resulting effective program. However, since
this situations occurs only very rarely, it can be neglected.

6.2.4 Minimum Effective Mutations

Effective mutations assure that the structurally effective code is changed.
It is, however, not possible to predict whether an effective mutation will
change just one or many effective instructions. That is, these genetic
operators do not explicitly guarantee that a certain effective variation
step size (Definition 5.4) is met.

Minimum effective mutations reduce the effective variation distance be-
tween parent and offspring to a minimum. For micro mutations this means
step size 0, i.e, no program instruction (prior to the mutated one4) is al-
lowed to change its status. For macro mutations it is required for all
instructions except for the inserted or deleted one, i.e., the minimum ef-
fective step size is 1. Therefore, variation operators have to select both
the (effective) mutation point and the mutated code in such a way that
no preceding program instruction is deactivated or reactivated.

To achieve this goal information about the functional (data flow) depen-
dencies within a linear genetic program are used. Minimum effective mu-
tations develop only one contiguous component of the graph, namely the
effective one, while not allowing code to become non-contiguous at all.
Since it would be unnecessarily complicated and computationally expen-
sive to calculate a minimum effective mutation deterministically, a prob-
abilistic trial-and-error approach will be used (see Chapter 9). The effec-
tive mutation step size is determined after the mutation is tried, using a
structural distance metric. It will be accepted if the criterion for maxi-
mum distance is met. Otherwise, it will be rejected and a new mutation
is tried (up to a maximum number of trials).

This probabilistic algorithm does not increase the number of fitness eval-
uations. Only the structural step size has to be recalculated during each
iteration which requires linear costs. In fact, the probabilistic induction
of minimum step sizes will turn out to be runtime-efficient in Chapter 9,
since the probability that more than one trial is needed decreases over the
course of a run.

4Instructions after the mutation point cannot be affected.
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6.2.5 Free Mutations

If we allow both noneffective and effective mutations to occur without
imposing any kind of restriction this will be referred to as free mutation or
standard mutation (abbr. mut) in the following. So far we have discussed
operators that guarantee a modification of the effective code. Such code-
effective mutations reduce the number of neutral variations significantly
and more variations become constructive or destructive.

When comparing effective and free mutations on the basis of generations,
the effective variant is usually superior because evolution will progress
faster within the same period of time. The resulting number of effective
operations will be significantly lower with the free variant and will depend
strongly on the proportion of noneffective instructions in programs.

As mentioned in Section 5.2 fitness does not have to be recalculated af-
ter noneffective variations since those are definitely neutral in terms of a
fitness change. Hence, only effective variations will cause relevant com-
putational costs. If we compare both mutation variants with respect to
number of evaluations, i.e., count offspring from effective variations only,
the comparison becomes fair in terms of the computational overhead.

The absolute variation step size between two fitness evaluations, i.e., two
effective variations, increases if several noneffective mutations happen in
between.

6.2.6 Explicit Induction of Neutral Mutations

The effective mutation approach has been introduced in Section 6.2.3 to
increase the rate of non-neutral variations. Another interesting approach
that can give insight into the meaning of neutral variations in linear GP,
does exactly the opposite: The neutrmut operator transforms most de-
structive mutations into neutral or constructive ones. Therefore, it ex-
plicitly controls the direction in which the fitness of an individual changes
after a standard mutation (mut).

The probabilistic Algorithm 6.3 describes a trial-and-error approach to
neutrality control. In order to generate more constructive or neutral vari-
ations, it repeats an instruction mutation as long as it is destructive.
Only after a certain maximum number of trials is a destructive variation
tolerated. Unsuccessful trials are discarded. Only the final variation is ac-
cepted and the resulting offspring becomes part of the population. Since
a destructive variation is necessarily structurally effective, each trial pro-
duces extra computational costs in the form of additional fitness calcula-
tions. This step is redundant only if the final variation is noneffective.
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Algorithm 6.3 (neutral (effective) mutation)
Parameters: parent program gpp and offspring gpo; maximum number of
iterations nmaxiter.

1. Copy parent program gpo := gpp. Number of iterations n := 0.

2. Apply Algorithm 6.1 to create an (effective) instruction mutation at a
random position in program gpo.

3. Apply Algorithm 3.1 to check if the mutation was effective.

4. If the mutation is effective then recalculate fitness F(gpo).

5. n := n + 1.

6. If the mutation is destructive (F(gpo) > F(gpp)) and n < nmaxiter

then → 2.

7. Stop.

As we said before a better fitness is equivalent to a smaller fitness value F .
Step 3 of the algorithm may be skipped if we apply an effective mutation
operator (effmut∗) in Step 2. To explicitly induce neutral variations on
effective code one can apply a certain percentage of effective mutations
(variant effmut2) in Step 3 of the probabilistic algorithm. This mutation
variant is called effective neutral mutation (abbr. neutreffmut).

Obviously, the runtime for variations induced by Algorithm 6.3 is not any
more linear in the number of program instructions since the cost for addi-
tional fitness evaluations cannot be ignored. Creating a high proportion of
offspring that are neutral may become computationally expensive. On the
other hand, most semantically neutral variations do not alter the effective
code, i.e., are structurally noneffective (see Section 6.4.1).

This motivates an alternative operator (noneffmut) which increases the
proportion of noneffective variations directly. A similar probabilistic con-
trol mechanism as described by Algorithm 6.3 may repeat a mutation
(mut) only until it is noneffective (or a maximum number of iterations
has been exceeded). This criterion can be verified efficiently since it only
requires a structural program analysis by Algorithm 3.1. This way, the
control of a semantic variation effect (neutrality) is reduced to the control
of a structural variation effect (non-effectiveness). Through adjusting a
parameter like the maximum number of trials nmaxiter the bias towards
noneffective mutations can be varied.
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Deterministic calculation of noneffective mutations, as it was applied
for effective mutations in Section 6.2.3, is not necessary, since non-
effectiveness of a variation is not as simple to guarantee as effectiveness.
Noneffective insertions of instructions may not be structurally possible if
all registers are effective at a certain program position. Instead, there is
always at least one effective register depending on our choice of instruc-
tion types (see Section 2.1.2). Of course, it would not be reasonable to
apply noneffective mutations exclusively, since this would not allow any
progress at all.

Not allowing mutations to become destructive may be regarded as an
(1+1)-EA selection [119] between parent and offspring. In an (1+1)-
EA the offspring replaces the parent only if its fitness is equal or better.
This is different from brood selection as proposed in [130] where several
offspring of the same parent compete in a (tournament) selection process
and only the lucky winner will be allowed into the population. Yu and
Miller [143] have found good performance for a Boolean problem (even-
3-parity) if neutral mutations are accepted in a modified (1+4)-EA but
do not compare their results with an approach that allows destructive
variations.

Avoiding both neutral and destructive mutations in Algorithm 6.3 has not
been found to be a feasible alternative. Too many trials and, thus, too
many additional fitness evaluations are necessary until a variation becomes
constructive. As a result, freedom of variation will be strongly restricted
in the process. Without neutral variations, intermediate variation steps
that have not proven to be directly advantageous are not possible, and
this severely limits the search success.

For a more general discussion about neutral variations we would like to
direct the reader to Section 10.4.

6.3 Experimental Setup

6.3.1 Benchmark Problems

In addition to the two benchmark problems from Section 5.8.1, mexican
hat and spiral, we use two further test problems in this section.

The regression problem distance necessitates the Euclidean distance be-
tween two points (vectors) �x and �y in n-dimensional space to be computed
by a genetic program (see Equation 6.1). The higher the dimension (we
use n = 3) the more difficult this problem becomes.

fdistance(x1, y1, .., xn, yn) =
√

(x1 − y1)2 + .. + (xn − yn)2 (6.1)
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Figure 6.1. three chains problem.

The three chains classification problem concatenates three rings of points
that each represent a different data class (see Figure 6.1). Each “ring” is a
circle of 100 points in three-dimensional space whose positions are slightly
noisy. The rings approach each other in five regions without allowing for
intersection. These regions determine the problem difficulty. The problem
is easily scalable depending on both the angle of the rings to one another
and on the number of rings.

6.3.2 Parameter Settings

Table 6.1 gives an overview of parameter settings specific to the two new
problems. Most parameters have already been introduced in Section 5.8.2.

Table 6.1. Problem-specific parameter settings.

Problem distance three chains

Problem type regression classification

Input range [0, 1] [0, 5]

Output range [0, 1] {0, 1, 2}
Number of inputs 6 3

Number of outputs 1 1

Number of output classes — 3

Number of registers 6 + 6 3 + 3

Number of examples 300 300

Fitness function SSE CE

Instruction set {+, +,−,−,×,×, /,
√

x, x2} {+,−,×, /, xy, if >}
Constants {1, .., 9} {1, .., 9}
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Multiple instances of the same instruction in the instruction set, as used
for the distance problem, increase the probability that the instruction is
selected during initialization and mutation. In this way, the distribution
of operator symbols within the population can be manipulated and is not
solely determined by fitness selection.

For the three chains problem we use interval classification. That is, the
distance between the problem output and one of the given identifiers for
the output classes (0, 1, or 2) must be smaller than 0.5 to be accepted as
correct.

Table 6.2 gives an overview of the different explicit bias configurations,
i.e., proportions of insertions and deletions, that will be applied with in-
struction mutation operators. Configuration B1 induces an explicit growth
bias by allowing two times more insertions than deletions. The maximum
possible bias Bmax uses insertions exclusively. B–1 denotes a shrink bias
and B0 is the bias-free standard case.

Table 6.2. Different proportions of insertions and deletions (biases).

Bias B–1 B0 B1 Bmax

Insertions (%) 33 50 67 100

Deletions (%) 67 50 33 0

Ratio 1:2 1:1 2:1 1:0

Otherwise, the experimental setup is the same as documented in Section
5.8.

6.4 Experiments

The different types of instruction mutations which have been introduced
in the previous section will now be compared with regard to prediction
performance and (effective) solution size. The influence of several control
parameters will also be examined. In particular, the number and the
distribution of mutation points will be considered.

6.4.1 Comparison of Instruction Mutations

The following eight Tables 6.3 to 6.10 compare the different mutation op-
erators on the four test problems. We list mean best prediction error and
standard deviation over 100 runs, plus the number of hits, i.e., the number
of times (out of 100) the optimum has been found. In addition, absolute
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Table 6.3. distance: Comparison of different instruction mutation operators using bias
configuration B1 for effective mutations and B0 otherwise. Average results over 100
runs after 1,000 generations.

Operator Config. SSE #Hits Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

mut 6.5 0.3 0 78 32 41 0.5 63 62

noneffmut maxiter 2 12.0 0.5 0 53 15 29 0.03 84 84

maxiter 3 16.7 0.4 0 33 6 20 0.005 90 90

neutrmut maxiter 2 5.4 0.3 1 84 38 45 0.3 81.5 80.9

maxiter 3 6.0 0.3 0 87 42 48 0.2 89.4 88.6

neutreffmut effmut 25% 3.7 0.2 0 98 52 53 0.8 70 68

effmut 100% 1.4 0.2 14 60 37 62 13.1 15 0

effmut 2.2 0.2 16 29 24 80 8.2 9.4 4.9

effmut2 2.6 0.3 6 65 36 56 9.6 5.9 0

effmut3 1.9 0.2 15 23 23 100 9.3 6.4 0

Table 6.4. distance: Comparison of different instruction mutation operators using bias
configuration B0. Average results over 100 runs after 1,000,000 (effective) evaluations.

Operator Config. SSE #Hits

mean std.

mut 5.0 0.3 0

noneffmut maxiter 2 6.3 0.3 0

maxiter 3 6.2 0.3 1

neutrmut maxiter 2 4.4 0.3 1

maxiter 3 5.5 0.3 0

neutreffmut effmut 25% 4.0 0.3 0

effmut 100% 2.7 0.3 14

and effective program sizes are listed, averaged over all individuals.5 We
also show the distribution of measured variation effects, i.e., constructive,
neutral, and noneffective variations.

The results of the same runs are compared on the basis of two different
scales, number of generations and number of effective evaluations. In the
first scale, the number of new individuals in the population (all accepted
variations) is counted. In the second scale, effective variations – plus
those genetic operations that are not accepted during neutrality control –
are counted. The reader may recall from Section 5.2 that fitness is recal-

5The size of best solutions is almost identical to the average solution size, because of a small
standard deviation in the population (≤ 5 instructions). This is a direct consequence of using
minimum step size on the instruction level.



Instruction Mutations 133

Table 6.5. mexican hat: Comparison of different instruction mutation operators using
bias configuration B1. Average results over 100 runs after 1,000 generations.

Operator Config. SSE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

mut 3.5 0.5 140 60 43 0.8 54 52

noneffmut maxiter 2 8.6 1.0 146 59 40 0.2 80 79

maxiter 3 17.6 1.4 131 39 30 0.02 86 86

neutrmut maxiter 2 1.4 0.2 154 76 49 0.6 72 70

maxiter 3 1.5 0.2 158 83 53 0.6 82 80

neutreffmut effmut 25% 0.9 0.11 154 82 53 1.0 66 63

effmut 100% 0.3 0.03 82 58 71 9.8 22 0

effmut 0.9 0.06 39 33 85 6.9 14 3.6

effmut2 1.0 0.06 57 39 69 7.6 12 0

effmut3 1.1 0.07 27 27 100 7.8 11 0.1

Table 6.6. mexican hat: Comparison of different instruction mutation operators us-
ing bias configuration B1. Average results over 100 runs after 1,000,000 (effective)
evaluations.

Operator Config. SSE

mean std.

mut 2.3 0.4

noneffmut maxiter 2 3.9 0.5

maxiter 3 4.5 0.5

neutrmut maxiter 2 1.2 0.4

maxiter 3 1.4 0.2

neutreffmut effmut 25% 1.1 0.13

effmut 100% 0.6 0.06

culated only if the effective code has been changed. Thus, a performance
comparison on the level of effective evaluations is a more accurate mea-
sure of computational costs. This notwithstanding, a comparison on the
level of generations is indispensable for experimental analysis concerning
program growth or variation effects.

The results obtained with effective mutations (effmut∗) are listed only for
one time measurement (generations). Depending on the implementation
the rate of noneffective variations is very small or zero with this operator.
Thus, results after 1,000 generations or 1,000,000 effective evaluations
(with population size 1,000) differ only very slightly or not at all. In
general, the performance of a genetic operator is the more similar with
both measurements, the less noneffective variations it produces, and the
less variations are rejected during a neutrality control (if used). The
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Table 6.7. three chains: Comparison of different instruction mutation operators using
bias configuration B1. Average results over 100 runs after 1,000 generations.

Operator Config. CE #Hits Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

mut 15.5 0.6 1 132 57 43 0.2 62 49

noneffmut maxiter 2 37.6 2.3 0 134 39 29 0.03 87 83

maxiter 3 68.4 3.1 1 124 24 19 0.007 96 95

neutrmut maxiter 2 13.4 0.7 2 142 65 46 0.1 82 64

maxiter 3 10.5 0.6 2 143 70 49 0.1 90 68

neutreffmut effmut 25% 8.4 0.5 3 143 92 64 0.1 84 41

effmut 100% 5.9 0.4 10 126 110 87 0.4 72 0

effmut 13.9 0.7 2 77 71 92 1.1 38 1.9

effmut2 12.1 0.7 5 96 84 87 1.0 39 0

effmut3 14.0 0.7 1 63 63 100 1.4 34 0

Table 6.8. three chains: Comparison of different instruction mutation operators us-
ing bias configuration B1. Average results over 100 runs after 1,000,000 (effective)
evaluations.

Operator Config. CE #Hits

mean std.

mut 11.8 0.6 1

noneffmut maxiter 2 13.3 0.6 1

maxiter 3 12.3 0.7 4

neutrmut maxiter 2 11.8 0.6 2

maxiter 3 9.9 0.6 3

neutreffmut effmut 25% 9.3 0.6 1

effmut 100% 10.5 0.6 2

effective mutation operator implicitly increases the rate of non-neutral
variations including a higher rate of both destructive and constructive
events. However, destructive events are by far the dominating variation
effect. About 85 percent of all variations are destructive in approximation
problems and about 65 percent in classification problems tested.

All three different variants of effective mutation operators (see Section
6.2.3) work almost equally well. Small differences may result either from a
slower growth of (effective) code due to a radical removal of all noneffective
instructions (effmut3) or from a faster growth due to a higher proportion
of such instructions (effmut2).

The effmut2 variant demonstrates that noneffective code remains small
even if deletions of noneffective instructions are prohibited (as in effmut).
Note that the rate of noneffective variations equals the rate of intron
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Table 6.9. spiral: Comparison of different instruction mutation operators using bias
configuration B1. Average results over 100 runs after 1,000 generations.

Operator Config. CE #Hits Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

mut 13.6 0.6 0 128 64 50 0.3 50 42

noneffmut maxiter 2 18.0 0.6 0 139 60 43 0.03 75 72

maxiter 3 25.5 0.8 0 135 50 37 0.005 89 87

neutrmut maxiter 2 8.7 0.4 0 143 79 56 0.1 70 57

maxiter 3 6.0 0.3 1 148 83 56 0.1 83 67

neutreffmut effmut 25% 2.9 0.2 13 148 101 68 0.2 70 41

effmut 100% 2.3 0.2 20 120 109 91 0.8 55 0

effmut 8.8 0.4 2 74 69 93 1.7 24 2

effmut2 7.2 0.5 1 86 77 90 1.4 25 0

effmut3 9.0 0.4 0 56 56 100 1.9 22 0

Table 6.10. spiral: Comparison of different instruction mutation operators using bias
configuration B1. Average results over 100 runs after 1,000,000 (effective) evaluations.

Operator Config. CE #Hits

mean std.

mut 9.0 0.4 0

noneffmut maxiter 2 9.0 0.4 0

maxiter 3 10.5 0.4 0

neutrmut maxiter 2 8.4 0.4 0

maxiter 3 6.7 0.3 1

neutreffmut effmut 25% 5.7 0.3 2

effmut 100% 7.1 0.4 5

deletions here since all other variations are effective. Depending on the
correlation between problem fitness and program length different variants
may be superior. For instance, variant effmut2 works better with the
classification problems, three chains and spiral.

The effmut3 results show that the existence of structural introns in linear
genetic programs is not so important, at least for the performance of
effective instruction mutations. This is due to multiple register usage
reflected in the graph-based data flow. It allows the effective code to
protect itself against larger deactivation (for more details, see Chapter 9).
The use of an explicit growth bias (B1 here) becomes more important with
this variant of effective mutations (see also Section 6.4.3). The resulting
faster code growth compensates at least partly for the loss of genetic
material.
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Effective mutations perform better than standard mutations (mut) un-
der the same number of variations (generations). On the level of effec-
tive variations (evaluations), however, standard mutations may perform
equally well or even better than mutations that vary the effective code
exclusively. This situation occurs with the two classification problems
and may result either directly from a higher rate of noneffective neutral
variations or indirectly from a larger size of solutions.

The neutrmut approach applies an explicit control of neutral variations
introduced in Section 6.2.6. After a variation is accepted or a maximum
number of trials (2 or 3 here) has been performed the offspring is copied
into the population. Otherwise, the operation is repeated. Thus, one
variation step may require more than one fitness evaluation, which ne-
cessitates a comparison on the basis of evaluations. Neutrality control
increases the rate of neutral variations up to about 90 percent. If we com-
pare the rate of noneffective variations we can see that almost all neutral
variations are noneffective, too, as far as the approximation problems are
concerned.

By comparison, the proportion of noneffective variations is definitely
smaller for the classification problems. On the one hand, neutral vari-
ations that alter the structurally effective code are induced more easily
because discrete fitness functions facilitate the propagation of semantic
introns. On the other hand, effective programs may grow larger when us-
ing branches because these allow both more semantic introns and a higher
specialization onto the training data.

Since about half of the variations turn out to be noneffective and thus neu-
tral already with the standard approach (mut), neutrality control (neutr-
mut) may affect at most 50 percent of variations that would be destructive
otherwise.6 We found that already two trials are sufficient, on average,
for almost all mutations to become neutral. Hence, the number of neces-
sary fitness evaluations is only double that of the standard approach. In
other words, only about the same total number of fitness evaluations is
required for promoting neutrality of variations as is necessary for avoiding
neutrality (effmut).

Concerning the prediction quality Tables 6.3 to 6.10 document that most
test problems benefit from an explicit introduction of neutral mutations
(neutrmut). Individuals resulting from a neutral variation have a higher
survival probability (see Chapter 10). Not surprisingly, improvements in

6Recall that noneffective variations do not produce computational costs in terms of fitness
evaluations.
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prediction error compared to standard mutations are more significant on
a generational basis than on an evaluation basis.

Can similar improvements be obtained by simply increasing the rate of
noneffective variations? Unfortunately, the noneffmut series of experi-
ments demonstrates that by increasing only the rate of noneffective neu-
tral variations, the prediction error is decreased drastically on a genera-
tional basis. The lower rate of effective variations leads to a lower rate of
constructive operations and, in some cases, to a smaller effective size of
programs.

When comparing results after the same number of effective evaluations,
this disadvantage is partly compensated. But the performance is still
worse than that achieved with the standard variant. Note that the total
variation step size increases significantly here because of the high number
of noneffective mutations that may happen between two fitness evalu-
ations, i.e., two effective variations. Consequently, if a higher rate of
noneffective variations does not improve chances for finding a solution,
the slightly larger difference between the proportions of neutral and non-
effective variations that occurs with the neutrmut operator seems to be
essential.

In order to increase the rate of such effective neutral variations more ex-
plicitly the neutreffmut operator applies a neutrality control together with
a certain percentage of operator effmut2. Interestingly, this combination
improves performance compared to applying both approaches separately,
especially on a generational basis. On the basis of evaluations, the differ-
ence in average prediction error shrinks between neutreffmut and neutrmut,
but is still significant. In addition, neutreffmut still clearly outperforms
pure effective mutations (effmut∗) for most problems (except for distance).

For the two discrete problems less neutral variations are noneffective.
Interestingly, even if effective mutations are applied 100 percent of the
time (neutreffmut) the resulting rate of neutral variations decreases only
slightly. Already 25% of explicitly induced effective mutations allow ef-
fective neutral variations to occur significantly more frequently.

In general, we may conclude that increasing the proportion of both neu-
tral and effective mutations achieves the highest gain in performance for
all test problems. Smaller absolute and effective solutions, however, are
achieved by using standard effective mutations which are mostly destruc-
tive. Chapter 10 will demonstrate that a small proportion of noneffective
code is a direct result of a low rate of noneffective (neutral) variations.
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6.4.2 Comparison with Segment Variations

A comparison between standard instruction mutations (mut) and seg-
ment mutations (onesegmut) in Section 5.9.2 reveals a significantly better
performance in favor of the first approach. This results mostly from the
minimum step size of instruction mutations. Standard segment mutations
apply an unlimited step size, by comparison.7

Figure 6.2 shows fitness development of the current best individual over
generations for different macro operators. Early in a GP run much infor-
mation is gained by the system. Best fitness improves significantly during
this period. Towards the end of a run, absolute fitness improvements
become smaller. In other words, the convergence speed of the fitness
decreases over a run.
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Figure 6.2. Development of best fitness for different (macro) variation operators with
mexican hat (left) and spiral (right). Average figures over 100 runs.

One can see that (effective) instruction mutations perform better than
crossover from early on in a run. The larger absolute step sizes of crossover
do not seem to provide an advantage in early generations. In the last 500
generations, on the other hand, fitness difference between operators stops
growing.

In particular, the difference between effective and standard instruction
mutations does not substantially decrease towards the end of a run. The
effectiveness of standard mutations – including insertions and deletions –
depends on the ratio of effective code and noneffective code in programs.
This ratio stays practically constant during a run as long as the size of
programs has not reached the maximum limit (not shown).

7The size of (effective) solutions differs only slightly.
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6.4.3 Explicit Growth Bias

By using macro mutations with a minimum step size of one instruction
the speed of code growth is severely restricted. We will test the influence
of different growth biases (introduced in Section 6.3) on the performance
of instruction mutations. Basically, the speed with which programs may
grow during a certain number of generations depends on both the prob-
lem and the macro variation operator. While the problem definition de-
termines the correlation between solution size and fitness, an explicit bias
of the variation operator is semantically independent. In contrast to an
implicit bias (see Chapter 10), it will influence code growth even without
fitness information.

Table 6.11. mexican hat: Comparison of free mutations and effective mutations with
different bias configurations. Average results over 100 runs after 1,000 generations.

Operator Config. SSE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

mut B–1 1.7 0.2 37 25 68 1.9 37 35

B0 2.4 0.3 72 41 58 1.3 45 43

B1 3.5 0.5 140 60 43 0.8 54 52

Bmax 6.9 0.9 179 75 42 0.8 55 53

effmut B0 1.3 0.09 26 23 88 7.0 13 4.2

B1 0.9 0.06 39 33 85 6.9 14 3.6

Bmax 0.9 0.06 101 72 71 7.3 14 0.6

effmut3 B1 1.1 0.07 27 27 100 7.8 11 0

Bmax 0.6 0.05 54 54 100 7.3 12 0

In Tables 6.11 and 6.12 the influence of different bias configurations on
the best prediction performance and the average program length is com-
pared. For the same bias configuration average program size remains
similar for both test problems if we apply standard instruction muta-
tions (mut). Interestingly, this holds for effective size as well. Effective
mutations (effmut∗), on the other hand, allow solution sizes to differ con-
siderably between problems, since fewer noneffective code occurs with
these variations. Then absolute program length is more subject to fitness
selection.

Contrary to Table 6.12, average prediction errors in Table 6.11 show a
clear negative influence of growth bias using standard mutations. In fact,
the mexican hat problem is solved best with a shrink bias. Configuration
B–1 reduces absolute and effective code growth almost by half compared
to the bias-free configuration B0.
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Table 6.12. spiral: Comparison of free mutations and effective mutations with different
bias configurations. Average results over 100 runs after 1,000 generations.

Operator Config. CE #Hits Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

mut B0 15.0 0.5 0 75 44 60 0.5 42 36

B1 13.6 0.6 0 128 64 50 0.3 50 42

Bmax 13.4 0.6 0 176 88 50 0.2 52 42

effmut2 B0 11.6 0.4 1 55 50 91 2.1 21 0

B1 7.2 0.4 1 86 77 90 1.4 25 0

Bmax 6.4 0.3 3 155 136 88 1.1 30 0

effmut3 B1 9.0 0.4 0 56 56 100 1.9 22 0

Bmax 5.3 0.3 1 122 122 100 1.7 23 0

In contrast to standard mutations, growth bias B1 has been found to
improve the performance of the effective mutation operator in both tables.
The maximum growth bias Bmax, however, has not turned out to be
much more successful than bias level B1, it only produces larger solutions.
Clearly effmut3 is improved and performs best, provided only insertions
of instructions happen.8
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Figure 6.3. mexican hat: Development of absolute program length (left) and effective
program length (right). Influence of different growth biases on free mutations (mut).
Average figures over 100 runs.

Figure 6.3 illustrates for mexican hat the development of absolute and
effective length over the generations using standard mutations. The in-
fluence of an explicit bias on code growth is relaxed as soon as a genetic
program has reached its maximum size. In this case, only instruction
deletions are possible (see Algorithm 6.1). Thus, if only insertions are

8Recall that programs normally grow more slowly with this variant due to a radical deletion
of introns (see Section 6.2.3).
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otherwise applied (by using Bmax), the rate of insertions and deletions
is almost balanced for such programs. This corresponds to applying no
bias at all and affects both the absolute program length and the effective
length. Note that the growth of effective code slows down in Figures 6.3
as soon as the average absolute size approaches the maximum.

We close this section with a general remark about applying an explicit
growth bias in genetic programming. In order to keep structural mutation
steps small between fitness evaluations over the entire run, it is required
that these are possible at almost all positions of a program representation.
In other words, the variability of the representation must be sufficiently
high. This is indeed the case for linear genetic programs and their graph-
structured data flow (see Section 6.1). Otherwise, a growth bias can only
be implemented in such a way that smaller subprograms are replaced with
a higher probability by larger subprograms. This, however, would allow
larger structural changes to happen as well.

In the following section we will demonstrate that a growth bias – in com-
bination with a minimum mutation step size – may not be outperformed
by using larger step sizes in the form of multiple mutations.

6.4.4 Number of Mutation Points

By using an explicit growth bias the evolutionary process can be guided
towards regions of search space where the complexity of solutions is more
suitable for finding a (near) optimal solution. We have seen in the previous
section that, depending on the problem and on the number of generations,
this may require code growth to be accelerated or slowed down.

Provided that a problem’s fitness benefits from faster growth of programs,
it might be argued that a biased operator is not really necessary. Instead,
program growth might be accelerated simply by allowing larger absolute
step sizes for the variation operator. We will demonstrate in the following
that this is not the case and that a minimum mutation step size yields
best performance.

Absolute mutation step size is controlled by the maximum number of
mutations that may be applied to an individual without exposing the
intermediate results to fitness selection. This number is chosen from a
uniform distribution over a certain maximum range. Alternatively, muta-
tion step size might be controlled by choosing a maximum segment length
in segment mutations. The basic difference between these approaches is
that there is either one or a multitude of mutation points. The insertion
of an effective segment more likely represents a single contiguous graph
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component and, thus, may affect less graph nodes on the functional level
of the program.

The experiments documented in Tables 6.13 and 6.15 demonstrate that
the optimal configuration for both test problems, mexican hat and spiral,
is to mutate, delete, or insert a single effective instruction (effmut). When
using standard mutations (mut), it might be expected that the optimal
number of mutation points is larger because this increases the chance that
the whole variation step becomes effective. Surprisingly, it turns out that
already two instructions are optimal, as shown in Table 6.14 and Table
6.16.

Table 6.13. mexican hat: Multiple effective mutations (effmut2, B0). Average results
over 100 runs after 1,000 generations.

Maximum SSE Length Variations (%)

#Mutations mean std. abs. eff. % constr. neutral noneff.

1 1.3 0.1 39 27 70 8.1 10 0

2 1.7 0.1 38 24 63 8.8 11 0

5 2.6 0.2 53 28 53 9.2 14 0

10 3.5 0.2 76 35 46 9.2 15 0

20 7.8 0.4 102 44 43 8.6 16 0

Table 6.14. mexican hat: Multiple mutations (mut, B0). Average results over 100 runs
after 1,000 generations.

Maximum SSE Length Variations (%)

#Mutations mean std. abs. eff. % constr. neutral noneff.

1 1.6 0.2 72 41 58 1.3 45 43

2 1.2 0.1 69 37 53 2.1 37 34

5 1.7 0.2 68 31 46 3.9 26 23

10 2.1 0.2 64 24 37 5.3 23 17

20 4.0 0.4 73 23 32 6.2 22 12

Effective mutations perform better than standard mutations if the muta-
tion number is small, because many standard mutations are noneffective.
The more mutations happen simultaneously, however, the higher the prob-
ability for a variation step to be noneffective as a whole. As a result, the
proportion of noneffective variations decreases together with the difference
in prediction error.

The shrinking proportion of effective code observed in all tables may be
interpreted as a protective reaction of the system. It reduces the aver-
age effective step size because a higher proportion of noneffective instruc-
tions will cause single mutations to become noneffective (neutral) with
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a higher probability. We have observed a similar protection mechanism
with crossover in Section 5.9.4.

Interestingly, the average effective length of programs decreases if more
standard mutations are applied simultaneously while the absolute length
remains constant or decreases more slowly (see Tables 6.14 and 6.16).
Besides less need for protection, the effective code may grow larger with
smaller variation steps because those allow a more precise approximation
to solution with a better fitness.

Table 6.15. spiral: Multiple effective mutations (effmut2, B1). Average results over
100 runs after 1,000 generations.

Maximum CE #Hits Length Variations (%)

#Mutations mean std. abs. eff. % constr. neutral noneff.

1 7.6 0.4 2 86 78 91 1.7 25 0

2 10.4 0.5 0 81 71 87 2.6 19 0

5 16.4 0.5 0 79 63 80 4.8 14 0

10 21.8 0.6 0 80 59 73 6.0 15 0

20 28.5 0.6 0 88 58 66 6.3 20 0

Table 6.16. spiral: Multiple mutations (mut, B0). Average results over 100 runs after
1,000 generations.

Maximum CE #Hits Length Variations (%)

#Mutations mean std. abs. eff. % constr. neutral noneff.

1 15.0 0.4 0 75 44 60 0.5 42 36

2 13.9 0.5 0 76 44 58 1.0 34 27

5 16.7 0.6 0 76 39 51 2.3 24 13

10 22.0 0.6 1 66 31 46 4.0 18 12

20 25.6 0.7 0 58 23 40 5.3 18 8

It is important to note in this context that an explicit growth bias (which
has been used only for the experiment documented in Table 6.15 here)
is not reinforced by using multiple instruction mutations per variation
step. That is, the absolute variation step size does not affect the ratio of
inserted and deleted instructions here.

Two conclusions are in order: (1) A non-minimal number of instruction
mutations does not improve performance in linear GP, at least if mutations
are effective. In other words, a fitness evaluation after each instruction
mutation is essential and cannot be spared. Minimum structural step
sizes still induce semantic step sizes that are large enough, on average,
to escape from local minima. (2) A higher mutation step size may not
be regarded as an alternative to an explicit growth bias. The prediction



144 Linear Genetic Programming

error does not improve by using several effective mutation points, neither
does the length of programs grow necessarily.

6.4.5 Self-Adaptation

The principle of self-adaptation (see discussion in Section 5.4.1) can be
applied for the coevolution of structural step sizes in linear GP. This may
either concern the number of mutation points in instruction mutations
or the segment length in segment mutations. Here the self-adaptation
of the number of effective instruction mutations is discussed. Only one
parameter has to be encoded into each individual, the maximum mutation
step size n. Actual step sizes may then be selected from a uniform or
normal distribution over the maximum range.9 For this discussion we
choose a uniform distribution. The variation of the individual parameter
value is controlled by a mutation probability p and a constant mutation
step size of ±1.

Results in the previous section have demonstrated that the optimum per-
formance is obtained with a (constantly) minimal number of effective
mutation points, namely one. This does not automatically imply that
varying the number of effective mutation points during runtime cannot
be advantageous. For instance, it would be interesting to know, whether
a higher mutation step size at the beginning of a run is more beneficial.
Perhaps a higher diversity in initial generations renders the evolutionary
algorithm less dependent on the composition of the genetic material in
the initial population. At least self-adaptation will provide us with infor-
mation about how precisely and how fast the optimal setting of mutation
parameters is approached.

Figure 6.4 shows how mutation step size develops over generations when
using self-adaptation. As one can see, the average individual step size in
the population converges to the minimum step size 1 for both problems,
mexican hat and spiral. The higher the mutation probability is set for the
step size parameter the more quickly the minimum is reached. We made
sure that no convergence occurs without fitness (selection). In this case,
the average mutation step size during a run oscillates around the value
that has been provided initially (10 here).

The prediction performance of these runs (not shown here) comes very
close to the performance obtained with constant step size 1 in Tables 6.13
and 6.15. In other words, varying a maximum step size on the symbol

9Only positive integer values are permitted as step sizes.



Instruction Mutations 145

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  200  400  600  800  1000

N
um

be
r 

of
 M

ut
at

io
n 

P
oi

nt
s

Generation

Mutation Rate 50%
5%

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  200  400  600  800  1000

N
um

be
r 

of
 M

ut
at

io
n 

P
oi

nt
s

Generation

Mutation Rate 100%
10%

5%

Figure 6.4. Development of the maximum number of mutation points with self-
adaptation for different parameter mutation rates using mexican hat (left) and spiral
(right). Numbers averaged over all parameter values in the population Initial setting is
10. Average figures over 100 runs.

structures during runtime has not been found to perform better than using
constant step size 1 from the beginning. It appears that larger variation
steps on the linear program structure are not more successful.

6.4.6 Distribution of Mutation Points

The final series of experiments on mutation investigates the role of the
mutation point. In the standard case each instruction is chosen with the
same probability. But is such a uniform distribution of mutation points
really close to the optimum? At first sight, we might expect it to be
true for an imperative representation composed of a linear sequence of
instructions.

Figure 6.5 shows how the functional structure of an effective linear pro-
gram is built by applying the three analysis algorithms from Section 3.4.
For each program position, the structural information is averaged over
all effective programs of the final generation that hold an instruction at
that position. The average effective length is about 55 instructions for
mexican hat and 110 instructions for spiral, with standard deviation of
effective lengths being below 5 instructions.

How does the average number of effective registers and the average effec-
tiveness degree depend on the effective instruction positions? Over the
first half of the program length the number of effective registers stays al-
most constant while decreasing over the second half, until it becomes 1 at
the last effective instruction in a program.10 The effectiveness of instruc-

10The average value is larger due to variable program length.
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Figure 6.5. Development of the number of effective registers, the degree of effective-
ness, and the effective dependence distance over effective program positions using ef-
fective mutations (effmut). Position 0 holds the first instruction of a program. Average
figures over all programs of the final (1,000th) generation and over 100 runs. Results
for mexican hat (left) and spiral (right).

tions decreases more regularly towards the end of a linear program, by
comparison. Both the effectiveness degree and the effective dependence
distance are 0 at the last effective instruction.

These observations can be explained if we recall from Chapter 3.3 that the
last effective instruction of a linear program corresponds to the root of the
underlying (effective) graph component. The number of effective registers
at an instruction position in the program is an approximation of the graph
width at that position. It appears that this width grows quickly to a
certain maximum (starting form the graph root) and stays rather constant
then because it is restricted by the total number of available registers.
Among other things, a restriction is necessary in order to not unnecessarily
increase the search space of programs (see also Section 7.1). A wider graph
requires a longer imperative representation. Correspondingly, the distance
of depending (effective) instructions increases in Figure 6.5 together with
the number of effective registers.

We can test the effective mutation operator with two alternatives to a
uniform distribution of mutation points over the effective program length.
Basically, the selection frequency is either increased towards the beginning
of a program (graph sinks) or towards the end of a program (graph root).

Tables 6.17 and 6.18 compare the performance of the three different dis-
tributions. Performance decreases if the mutation probability is higher
at the end of a linear program, and is almost not affected (mexican hat
problem) or increased (spiral problem) if mutation probability is higher at
the beginning. These effects directly follow from the functional structure
of the genetic programs:
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An instruction close to the program end is most likely located high up in
the graph structure where the graph width (number of effective registers)
is rather small. Mutations are more destructive in this region since more
calculation paths lead through instruction nodes. In turn, mutation effects
in central and lower graph regions (where graph width is more constant)
are less destructive.

Table 6.17. mexican hat: Comparison of different frequency distributions of muta-
tion points over the effective program length n (effmut). U(n) calculates a uniformly
distributed integer number within range [0, n). N (0, 0.33n) calculates a normally dis-
tributed random number from range (−n, n) with expectation 0 and standard deviation
0.33 × n. Average results over 100 runs after 1,000 generations.

Mutation SSE Length Variations (%)

Distribution mean std. abs. eff. % constr. neutral noneff.

U(n) 0.9 0.06 39 33 85 6.9 14 3.6

|N (0, 0.33n)| 0.8 0.07 44 37 84 5.6 18 3.5

n − 1 − |N (0, 0.33n)| 12.8 1.5 39 31 79 8.3 12 4.5

Table 6.18. spiral: Comparison of different frequency distributions of mutation points
over the effective program length n (effmut). Average results over 100 runs after 1,000
generations.

Mutation CE #Hits Length Variations (%)

Distribution mean std. abs. eff. % constr. neutral noneff.

U(n) 8.8 0.4 2 74 69 93 1.7 24 1.7

|N (0, 0.33n)| 4.5 0.3 10 86 79 91 1.3 33 1.7

n − 1 − |N (0, 0.33n)| 14.8 0.8 0 79 72 91 1.8 27 1.6

Note that a higher mutation frequency at the beginning of a linear pro-
gram may have an even more positive influence on the evolutionary search
if a larger number of registers is used. As we will see in Section 7.1 the
functional program structure becomes more tree-like then.

A second explanation for the above results may be found in the effec-
tiveness degree which decreases approximately linearly over the program
length in Figure 6.5. A high connectivity of graph nodes reduces the prob-
ability that effective subgraphs are disconnected. One may expect now
that the effective step size increases continuously the closer the mutation
point is located to the program end (the graph root). At least this it true
to a certain extent, as will be demonstrated in Section 9.7.2.
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6.5 Summary and Conclusion

The most important results of this chapter can be summarized as follows:

� In general, better fitness values occur with smaller mutation step sizes.
The best performance as well as the the smallest solutions were obtained
by using a minimum mutation step size of one instruction, in combination
with a guaranteed effectiveness of the variation. It appears that even
smallest changes of the program structure induce semantic step sizes that
are sufficiently large, on average, to escape from local minima (see also
Chapter 9).

Effective instruction mutations performed even better when coupled with
an explicit bias to code growth. Such a performance gain was not possible
with a larger mutation step size. Moreover, we found that the effective
program length may shrink by using multiple instruction mutations.

� An additional gain in performance, but larger solutions, were obtained
by increasing the proportion of neutral instruction mutations on the ef-
fective code. This particularly emphasizes the importance of neutral vari-
ations for the evolutionary progress. In general, the induction of neutral
variations requires that we obtain information about program semantics
by means of multiple fitness evaluations. These extra computational costs
cannot be neglected even if one needs to recalculate fitness only after
(structurally) effective code has been altered. Nonetheless, an explicit
control of neutrality has been found computationally affordable on the
basis of (effective) evaluations.

� If only single effective instructions are varied, the existence of struc-
turally noneffective code in programs has not been found to be absolutely
essential for producing high quality solutions. The same is true for nonef-
fective variations. That does not mean, however, that structural introns
may not contribute to evolutionary progress at all (see Section 10.7.5).

Other noneffective code turned out to be more clearly beneficial. Since
effective neutral variations were highly profitable this must be valid for
semantic introns, too, which tend to result from these variations.

For a summary of results concerning the influence of the different genetic
operators on the solution size, the reader is directed to Section 10.8.1.
Moreover, Chapter 10 will discuss several causes for code growth in linear
GP. Again neutral variations will play an important role.



Chapter 7

ANALYSIS OF CONTROL PARAMETERS

In the previous two chapters parameters have been analyzed that are
closely related to one of the variation operators. In this chapter we analyze
influences of more general system parameters that are relevant in linear
genetic programming. In particular, the number of registers, the number
of constants, the population size, and the maximum program length will
be studied. Additionally, we compare different initialization techniques
for linear genetic programs. Test problems are again the approximation
problem mexican hat and the classification problem spiral introduced in
Section 5.8.1.1

7.1 Number of Registers

In linear genetic programming saving local information in registers is an
implicit part of the imperative representation. Each operation on registers
or constants is combined with an assignment of the result to another
register that may again serve as an operand in succeeding instructions.
For the following considerations we assume that all registers can be written
into.

The number of registers is crucial for determining performance of linear
GP. If the number of inputs is low and only a few calculation registers
are provided, register content will be overwritten frequently. This makes
complex calculations and the emergence of complex problem solutions
quite difficult. If too many calculation registers are provided, on the other

1The only difference to the configuration in Section 5.8.2 is that mexican hat is treated with a
complete function set {+,−,×, /, x2, ex} that allows the optimum solution to be found.
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hand, the search space is unnecessarily expanded. Furthermore, many
programs may be semantically identical in the initial population since the
probability is low that instructions manipulate effective registers, given
that there are so many registers to choose from (see also Section 2.3.1).
Hence, an optimal number of registers can be expected for each problem
which will represent the best trade-off. Certainly, this optimal number of
calculation registers will depend on the problem structure as is the case for
the maximum program length. As we have seen earlier, both parameters
determine size and shape of the program graph.

Table 7.1. spiral: Effects of different register numbers using effective mutations (eff-
mut2, B1). Number of input registers is 2. Calculation registers are initialized with
constant 1. Average results over 100 runs after 1,000 generations.

#Calculation CE #Hits Length Variations (%)

Registers mean std. abs. eff. % constr. neutral noneff.

0 24.7 0.5 0 77 73 96 1.8 30 0

2 10.8 0.6 0 82 76 92 1.9 26 0

4 7.6 0.4 2 86 78 91 1.7 25 0

8 6.8 0.3 3 97 86 89 1.4 26 0

16 6.1 0.3 3 111 96 86 1.0 30 0

32 8.8 0.4 0 132 110 83 0.6 35 0

64 11.9 0.5 0 144 113 78 0.4 41 0

128 17.2 0.6 0 153 108 70 0.3 49 0

#Calculation #Eff. Eff. Eff.Dep.

Registers Registers Degree Distance

0 1.9 5.5 1.4

2 3.4 4.0 2.3

4 4.7 3.3 3.1

8 7.1 2.6 4.5

16 10.8 2.1 6.6

32 15.7 1.7 9.0

64 20.9 1.4 11.2

128 25.1 1.2 12.5

Additional registers may not be beneficial for problems that feature a high
number of inputs. Because not all inputs may be relevant for a solution,
calculations may not require additional registers for a better performance
at all. Instead, irrelevant inputs could simply be overwritten.

In this section we investigate how the number of (calculation) registers
affects the system behavior. Prediction quality, program length and vari-
ation effects, together with the functional structure of effective linear pro-
grams is analyzed. The latter requires a look at the number of effective
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registers, effectiveness of instructions, and distance of depending effective
instructions (see Section 3.4).

If mutations are generated with the effmut operator, good solutions may
still be found, even with the highest number of registers (see Table 7.1). In
contrast, by using standard mutation (mut) the prediction error increases
significantly beyond a certain register number (cf. Tables 7.2 and 7.3).

Table 7.2. spiral: Effects of different register numbers using free mutations (mut, B1).
Number of input registers is 2. Calculation registers are initialized with constant 1.
Average results over 100 runs after 1,000 generations.

#Calculation CE Length Variations (%)

Registers mean std. abs. eff. % constr. neutral noneff.

0 26.9 0.5 105 59 56 0.6 47 33

2 14.8 0.5 120 63 52 0.4 48 38

4 12.5 0.4 128 66 52 0.3 49 41

8 10.5 0.4 136 67 49 0.2 53 45

16 11.8 0.4 145 68 47 0.1 58 50

32 17.2 0.6 148 59 40 0.1 68 61

64 40.4 1.2 142 26 18 0.0 86 82

128 66.5 1.2 135 8 6 0.0 94 93

#Calculation #Eff. Eff. Eff.Dep.

Registers Registers Degree Distance

0 1.8 3.5 1.2

2 3.1 2.9 2.1

4 4.4 2.7 2.8

8 6.5 2.3 4.1

16 9.7 1.9 6.0

32 12.7 1.5 7.2

64 9.3 1.0 4.5

128 4.7 0.6 1.7

Since the effective mutation operator selects the destination register of
newly inserted instructions effectively (see Section 6.2.3) the evolution-
ary process becomes somewhat independent of the total number of regis-
ters. The drawback of a larger search space can thus be counterbalanced.
With standard mutations the probability of selecting an effective register
decreases directly with the number of registers provided. The resulting
higher rate of noneffective variations promotes the emergence of more
noneffective instructions.

As we know from Section 3.3, the number of effective registers corresponds
to the width of the (effective) program graph. The more registers that are
available, the wider this graph may become. Concurrently, the connec-
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tivity of graph nodes, or, more precisely, the number of incoming edges
per node (indegree) decreases with higher register numbers. A constant
indegree of 1 means that the graph represents a tree program. Remember
that the connectivity of nodes corresponds to the effectiveness degree of
instructions in the imperative program which provides information about
how often the result of an effective instruction is used to calculate the
program output.

Figure 7.1 shows the average distribution of effective registers over the
effective program positions. Obviously, the functional structure becomes
more and more tree-shaped with a higher number of registers if we take
into account that the average effectiveness degree over all program in-
structions in Table 7.1 converges to 1. With standard mutation and many
registers, this value may even become smaller than 1 (see Tables 7.2 and
7.3). In this case, the rate of effective instructions is so low, on average,
that many programs do not even hold a single effective instruction, i.e.,
have effective length 0.
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Figure 7.1. spiral: Distribution of the effective register number (left) and the effective
dependence distance (right) over the (effective) program positions using effective mu-
tations (effmut) with different numbers of calculation registers. Average figures over
all programs of the final (1,000th) generation and over 100 runs. The standard devia-
tion of program lengths ranges between 5 instructions (0 calculation registers) and 10
instructions (128 calculation registers).

The number of registers also influences the length of linear genetic pro-
grams. Note that in Table 7.1 the effective size grows continuously with
the register number. Larger and wider program graphs are required to
represent the same solution if nodes are only weakly connected. That
means more (effective) instructions are needed in the imperative program.
This, in turn, increases the average distance between two depending in-
structions in the effective program (see also Figure 7.1). As we know two
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Table 7.3. mexican hat: Effects of different register numbers using effective mutations
(mut, B0). Number of input registers is 2. Calculation registers are initialized with
constant 1. Average results over 100 runs after 1,000 generations.

#Calculation SSE Length Variations (%)

Registers mean std. abs. eff. % constr. neutral noneff.

0 7.6 0.9 52 37 71 3.2 29 26

2 6.0 0.9 66 39 59 1.7 41 39

4 3.0 0.5 73 39 53 1.1 49 47

8 1.3 0.2 80 35 44 0.6 59 58

16 3.6 0.5 78 25 32 0.2 73 72

32 21.1 1.0 68 12 18 0.0 86 85

64 42.1 1.2 61 5 8 0.0 92 91

#Calculation #Eff. Eff. Eff.Dep.

Registers Registers Degree Distance

0 1.7 1.4 1.1

2 2.7 1.3 1.6

4 3.3 1.3 2.0

8 4.3 1.2 2.5

16 4.4 1.1 2.3

32 3.4 0.9 1.6

64 2.5 0.7 1.0

depending instructions correspond to two directly connected instruction
nodes in the graph representation.

It has to be mentioned, however, that the program length is not always
affected by the register number in evolutionary runs with effective muta-
tions. For the mexican hat problem we found hardly any change in the
amounts of effective code and noneffective code, not even with very many
registers. Nevertheless, similar developments over the number of registers
were observed in terms of the structural program analysis.

Similar developments as those found for effective mutations can be ob-
served with standard mutations until a certain number of registers (see
Tables 7.2 and 7.3). Beyond that point the complexity of solutions – in-
cluding the size and proportion of effective code, the average number of
effective registers, as well as the average effective dependence distance –
decrease again.

7.1.1 Initialization of Registers

The results in Table 7.1 are obtained by using as many input registers
as there are input values. Calculation registers are initialized with a con-
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stant value 1. We have seen that beyond a certain register number the
performance starts to decrease again. At that point, the probability for
selecting an input register during mutation becomes simply too low. This
problem can be overcome by initializing more registers with input values.

As a side effect, input values are less likely to be lost by overwriting in
calculations. The same input value may be used more frequently as an
operand in a genetic program if it is held in more than one register. As
indicated in Section 3.3, such operand registers label variable sink nodes
(terminals) in the functional representation. More input registers mean
more variable terminals that share the same label.

In the following experiments, we assign an input value to each register
such that each input occupies about the same number of registers. As
one can see in Table 7.4, the average prediction error stays approximately
the same even above the optimal number of registers. Apparently, the
problem with a larger search space by more registers is counterbalanced
by registers being initialized with input values, as opposed to the situation
with constant initialization in Table 7.1. Moreover, the best prediction
error has been found to be half its former size while the hit rate is signif-
icantly higher.

Table 7.4. spiral: Effects of different register numbers using effective mutations (eff-
mut2, B1). Number of input registers is 2. Calculation registers are initialized with
input values. Average results over 100 runs after 1,000 generations.

#Calculation CE #Hits Length Variations (%)

Registers mean std. abs. eff. % constr. neutral noneff.

0 24.7 0.5 0 77 73 96 1.8 30 0

2 9.5 0.4 1 82 76 92 1.9 25 0

4 5.5 0.3 3 84 76 91 1.8 24 0

8 3.4 0.3 16 91 80 88 1.6 25 0

16 3.0 0.2 9 103 89 86 1.3 26 0

32 3.4 0.3 15 113 95 84 1.0 29 0

64 3.6 0.3 11 126 102 81 0.9 32 0

128 3.9 0.3 7 133 103 77 0.7 34 0

The average number of effective registers is quite similar to that of stan-
dard initialization (undocumented). In other words, calculations do not
involve a larger number of effective registers only because more registers
are initialized with input data. The size of resulting (effective) solutions
is also comparable to that of standard initialization runs.

The behavior described here has not been observed with the approxima-
tion problem. The mexican hat performance improves only slightly and
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gets worse again for higher register numbers, similar to the situation where
calculation registers are initialized with constants.

We will now analyze how crossover results are influenced by the num-
ber of registers holding input values. Table 7.5 and Table 7.6 show that
the average prediction error improves to a certain extent by using more
calculation registers. Especially the mexican hat problem is much better
solved if compared to a constant initialization of 4 calculation registers
(see baseline results at maximum length 200 in Tables 7.13 and 7.14).

Table 7.5. mexican hat: Effects of different register numbers using crossover (cross).
Number of input registers is 2. Calculation registers are initialized with input values.
Average results over 100 runs after 1,000 generations.

#Calculation SSE Length Variations (%)

Registers mean std. abs. eff. % constr. neutral noneff.

0 11.4 0.9 144 71 49 6.4 21 14

2 5.9 0.8 167 65 39 5.3 24 19

4 2.8 0.5 177 59 33 4.6 27 23

8 1.7 0.2 184 52 28 3.8 30 26

16 1.7 0.2 187 43 23 3.1 34 31

32 4.5 0.4 186 34 18 2.6 45 41

64 10.2 1.3 187 25 13 1.8 51 49

Table 7.6. spiral: Effects of different register numbers using crossover (cross). Number
of input registers is 2. Calculation registers are initialized with input values. Average
results over 100 runs after 1,000 generations.

#Calculation CE Length Variations (%)

Registers mean std. abs. eff. % constr. neutral noneff.

2 23.8 0.7 186 109 58 3.5 24 13

4 19.0 0.6 187 102 55 3.2 24 15

8 15.3 0.5 187 101 54 2.8 23 15

16 13.0 0.4 190 98 52 2.2 23 15

32 15.1 0.5 192 87 45 1.8 25 17

64 18.2 0.5 192 77 40 1.5 30 20

128 22.7 0.5 192 67 35 1.2 35 24

A lower proportion of effective code, i.e., a higher proportion of structural
introns, may be maintained by using more registers. This results mostly
from the fact that a smaller proportion of registers is effective, on average.
If only a small number of additional registers is provided, the effective
length of programs depends strongly on their absolute length. It is inter-
esting to note that the absolute length grows larger over the number of
registers while the effective length grows smaller. In Table 7.6 the abso-
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lute length is virtually the same for all register configurations due to both
a faster code growth and the maximum length bound.

A smaller proportion of effective code is correlated with a higher number of
noneffective variations because it reduces the effective step size of segment
variations like crossover. Crossover performance is improved until the rate
of effective operations and the effective code are reduced so much that
better solutions cannot be produced any more (on average).

We will demonstrate in Section 9.7.2 that the register number on its own
has a negative influence on the effective step size, independent of the ap-
plied variation operator: A decreasing effectiveness degree of instructions
by more registers renders the deactivation of larger segments of code more
likely and the effective code more brittle.

7.1.2 Constant Registers

An effective way to protect input information of programs is to forbid
overwriting input registers as destination registers in instructions. Con-
stant input registers could be considered unchangeable over the run. In
the graph interpretation of linear programs constant input registers are
constant sinks that may be direct successors of many more nodes.

For the two problems under investigation this technique has not been
found to produce better results than those obtained with the standard
configuration. In contrast to the approach from Section 7.1.1 the prob-
ability for selecting an input register decreases with the total number
of registers. Moreover, if all input registers are constant, extra variable
(writable) registers have to be provided for calculation and for storing the
program output(s). These additional registers increase the search space
of programs.

7.2 Number of Output Registers

In the standard case, a single register is explicitly designated in linear GP
for holding the output of a program after execution.2 Alternatively, one
can check the fitness separately for multiple output registers. Recall that
output registers may be any writable register, including input registers.

If the fitness of an individual program is calculated it is executed once for
each fitness case. The content of all registers is saved after each program
execution. This allows the program fitness to be calculated efficiently

2Let us assume that there is only one output defined by the problem to be solved.
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multiple times without further execution while each time the content of
another register may be used as the program output. The output register
with which a program performs best during training is saved with the
program and determines its fitness value. Note that this register may not
be changed any more when the program is applied to unknown test data.

Each output register or, more precisely, the last instruction in a pro-
gram that manipulates it, labels the root of a contiguous subgraph in the
functional interpretation (see Section 3.3). These subprograms may be
considered as multiple solutions. If the output register is static exactly
one contiguous component is effective and tested. If the output register
is dynamic, a different component becomes effective for each designated
output register. Correspondingly, in the imperative code the distinction
between effective and noneffective instructions depends on the definition
of the output register.3

For both test problems, mexican hat and spiral, the performance has not
been found to improve with multiple output registers over a single output
register. While crossover (cross) results were almost unchanged in both
test cases, instruction mutation (mut) results were more restricted. In gen-
eral, the output register that is saved with the best-fit individual changed
mostly at the beginning of a run. After a while one output register dom-
inated the population. This experiment not only shows that the output
register is better fixed, but also encourages the exclusive development of
a single graph component, as it is possible with effective mutations.

In addition, the content of registers may be saved not only after the entire
program has finished, but after the execution of each instruction. Then fit-
ness can be checked for each program register and each program position.
Oltean et al. [97] report on a better performance for simple regression
problems when comparing this method on the basis of uniform crossover,
allowing multiple crossover points and segments.

In Section 11.6 we will discuss the combination of multiple output regis-
ters.

7.3 Rate of Constants

Besides instruction operators and registers, constants represent the third
basic component of linear genetic programs. The reader may recall from
Section 2.1.2 that we allow only one of two operands of an instruction to

3There still may exist program instructions that are noneffective for all (potential output)
registers.
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hold a constant. In this way, assignments of constant values are avoided.
For instance, instructions like r0 := 1 + 2 or r0 := sin(1) would not be
possible. There is thus at least one register for each program position
whose manipulation may influence the effective code. Otherwise, if the
number of effective registers becomes zero, effective variations would not
be possible at each program position.

The same arguments hold for constant register operands, like inputs that
have been discussed in Section 7.1.2.4 While number and range of con-
stants (we use {0, .., 9}) in the terminal set are problem-dependent pa-
rameters, we examine the number of operands in programs that represent
constants. This number equals the number of instructions holding a con-
stant and is controlled by the probability by which constants are created
in programs during mutation and initialization. At standard configura-
tion a probability of 50 percent is used in most experiments. This has
been found to be a good choice, in general. Note that the composition of
programs, i.e., the distribution of program elements in the population, is
strongly influenced by fitness selection.

Table 7.7. mexican hat: Effects of different proportions of instructions holding a con-
stant (effmut, B1). Average results over 100 runs after 1,000 generations.

Constants (%) SSE Length #Eff. Eff. Eff.Dep.

mean std. abs. eff. % Registers Degree Distance

0 1.2 0.2 41 36 88 3.7 1.5 2.0

50 0.6 0.06 33 28 85 2.8 1.2 1.6

100 33.8 0.01 18 11 60 1.0 0.9 0.9

Table 7.8. spiral: Effects of different proportions of instructions holding a constant
(effmut, B1). Average results over 100 runs after 1,000 generations.

Constants (%) CE Length #Eff. Eff. Eff.Dep.

mean std. abs. eff. % Registers Degree Distance

0 10.1 0.5 62 59 96 5.0 3.7 2.7

50 8.4 0.4 66 62 95 4.6 3.3 3.1

100 12.8 0.5 69 63 91 4.1 2.5 3.9

For the mexican hat problem, Table 7.7 compares prediction performance,
program size and program characteristics for different rates of constants.
Interestingly, prediction error increases significantly less from the baseline

4In our implementation, constant values are saved in registers (see Section 2.1.1). Instead
of holding constants directly in instructions they are addressed via register indices. These
“registers” differ from what is referred to as a constant (input) register in that their value may
not change between two executions of the same program.
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case of 50% if constants are completely forbidden, than if each instruction
includes a constant value. Moreover, both absolute and effective program
size become smaller the more instructions hold a single register operand.

These results may be explained by having a look at the functional struc-
ture of programs. If all instructions use the result of only one other
instruction the graph is reduced to a linear list of operator nodes. Such a
restriction makes the emergence of successful solutions for complex prob-
lems impossible or, at least, substantially more difficult. As a result, the
average number of effective registers, the average degree of effectiveness
and the average effective dependence distance are constantly 1 for all ef-
fective programs.5

The results in Table 7.8 show, by contrast, that the spiral classification
is less influenced by the rate of constants in linear programs, as can be
seen for almost all observed features. This behavior can be attributed
to the fact that branches are used for this problem. With branches, the
data flow is not restricted to a linear list of nodes even if all instructions
operate on a single register only.

7.4 Population Size

The evolutionary algorithm that is used throughout the book (see Section
2.3.2) operates on a steady-state population. Population size is an im-
portant parameter when comparing mutation-based with recombination-
based variation.

The performance of recombination depends by definition on the composi-
tion of the genetic material in the population. The genotype diversity of
a population influences innovation in a positive way, while larger popula-
tions allow a higher diversity than smaller ones.

On the other hand, population size may have a smaller influence on the
performance of mutations which generate diversity by continuously in-
troducing new genetic material into the population. It has to be noted,
however, that diversity is not the only system attribute that is influenced
by the population size. Even a pure mutation-based approach may still
benefit from the higher parallelism of the search in larger populations.
Moreover, as we will see below, population size has an influence on the
complexity of solutions.

5The last two parameters in Table 7.7 are slightly smaller due to programs with effective length
0. The first parameter calculates 1 for these programs because at least the output register stays
effective.
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If solution quality is compared for different population sizes on the basis
of a constant number of generations, larger populations always produce
better results. More evaluations are performed per generation while av-
erage number of evaluations (and variations) per individual remains the
same. The number of evaluations equals the number of variations since
newly created individuals are the only ones evaluated. A fair compari-
son can only be guaranteed if runtime is measured on the basis of fitness
evaluations.

The smaller the population size, the more often an individual is selected
for variation and the more variations occur within a certain number of
generations. If a population does not have enough individuals in relation
to the number of evaluations, performance will depend more strongly on
the composition of the initial genetic material and code diversity may be
quite low.

With a larger population, more solutions may be developed in parallel.
However, if a population has too many individuals in relation to the num-
ber of evaluations, the number of variations per individual may not be
sufficient to develop successful solutions. Then success will depend more
on random events than on real evolutionary progress.

Table 7.9. mexican hat: Effects of population size on crossover (cross). Average results
over 100 runs after 1,000,000 evaluations.

Population #Generations SSE Length Variations (%)

Size mean std. abs. eff. % constr. neutral noneff.

10 100,000 23.2 2.4 143 74 52 4.5 39 24

100 10,000 12.4 1.4 196 91 46 5.6 24 18

1,000 1,000 16.1 1.5 180 60 33 4.5 28 25

10,000 100 11.9 1.3 97 21 22 4.4 36 33

Table 7.10. spiral: Effects of population size on crossover (cross). Average results over
100 runs after 1,000,000 evaluations.

Population #Generations CE Length Variations (%)

Size mean std. abs. eff. % constr. neutral noneff.

10 100,000 45.3 3.6 109 83 76 2.9 41 31

100 10,000 23.5 0.7 196 125 64 3.8 18 11

1,000 1,000 26.1 0.7 185 102 55 3.6 23 14

10,000 100 24.7 0.4 125 53 42 3.0 38 23

Table 7.9 and Table 7.10 demonstrate that crossover performs worst in
very small populations. It is interesting to see that the relative differ-
ence in performance is rather low with larger population sizes after the
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same number of evaluations. When using effective mutations, the situa-
tion is less clear. For the spiral problem best solutions are obtained with
the smallest population size (see Table 7.12). The mexican hat problem,
instead, is solved most successfully with a medium population size (see
Table 7.11). Only if the number of generations falls below a certain mini-
mum, the performance decreases again. This example demonstrates that
a pure mutation-based approach does not automatically perform better
with a smaller population size. In general, crossover performance seems
to depend less on the relation of population size and generation number
than instruction mutations.

Table 7.11. mexican hat: Effects of population size on effective mutations (effmut2,
B0). Average results over 100 runs after 1,000,000 evaluations.

Population #Generations SSE Length Variations (%)

Size mean std. abs. eff. % constr. neutral noneff.

10 100,000 1.8 0.3 119 66 56 8.2 5.2 0

100 10,000 1.1 0.1 70 43 62 9.0 6.3 0

1,000 1,000 0.7 0.05 39 25 64 8.4 9.9 0

10,000 100 2.8 0.2 21 12 55 9.0 16.6 0

Table 7.12. spiral: Effects of population size on effective mutations (effmut2, B0).
Average results over 100 runs after 1,000,000 evaluations.

Population #Generations CE Length Variations (%)

Size mean std. abs. eff. % constr. neutral noneff.

10 100,000 5.7 0.3 122 105 86 1.5 16 0

100 10,000 7.5 0.4 96 88 92 1.4 29 0

1,000 1,000 11.6 0.4 51 47 92 2.2 20 0

10,000 100 25.5 0.5 24 18 76 3.4 31 0

The different optimal population sizes found for the two test problems
may result from a different correlation between solution quality and solu-
tion size. Population size clearly influences code growth, especially when
using effective mutations. But why do programs become larger in smaller
population? As long as larger solutions show a better fitness, an indi-
vidual may grow larger in a smaller population because it is selected and
varied more frequently. Likewise, causes of code growth other than fitness
may be reinforced (see Chapter 10). In particular, more neutral variations
per individual may create more neutral code.

The small absolute step size of instruction mutations may lead programs
to grow only insufficiently in larger populations if only a few generations
are observed.
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7.5 Maximum Program Length

The simplest form of growth control in genetic programming is to keep
the maximum size limit of programs as small as necessary for represent-
ing successful solutions. In tree-based GP this is the maximum number of
nodes or the maximum tree depth [64]. In linear GP we restrict the maxi-
mum number of program instructions. In this section the influence of the
maximum program length is examined for unlimited linear crossover. In
contrast to crossover, effective mutations control complexity of programs
themselves. For effective mutations, the upper bound of program length
may be chosen sufficiently large to not be reached within an observed
period of generations.

Table 7.13. mexican hat: Effects of maximum program length on crossover (cross).
Average results over 100 runs after 1,000 generations.

Maximum SSE Length Variations (%)

Length mean std. abs. eff. % constr. neutral noneff.

25 10.3 1.2 25 15 62 5.6 24 22

50 4.8 0.8 48 26 54 5.3 24 22

100 8.4 1.2 94 40 43 5.0 26 23

200 16.1 1.5 180 60 33 4.5 28 25

500 20.4 1.5 410 97 24 4.1 32 28

1,000 21.0 1.5 751 145 19 3.9 35 31

Table 7.14. spiral: Effects of maximum program length on crossover (cross). Average
results over 100 runs after 1,000 generations.

Maximum CE Length Variations (%)

Length mean std. abs. eff. % constr. neutral noneff.

20 37.7 0.7 20 16 78 4.5 19 13

50 30.2 0.8 49 34 69 3.9 20 14

100 27.9 0.7 96 59 61 3.8 22 15

200 26.1 0.7 185 102 55 3.6 23 14

500 23.3 0.7 446 216 48 3.5 26 16

1,000 21.7 0.6 858 392 46 3.3 27 16

Tables 7.13 and 7.14 show exactly the opposite effect on the performance
of our two test problems. While mexican hat benefits from a small max-
imum size of solutions, spiral does not. Most successful solutions for the
regression problem may be assumed in low-dimensional regions of the
search space, while for the classification task even very large effective so-
lutions perform better. In other words, fitness is positively correlated with
program size for the latter problem. For the former problem there is a
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similar behavior until a sufficiently large maximum size has been reached.
Beyond that point, the correlation becomes negative.

One important general conclusion can be drawn from the fact that even
very long linear programs still improve results: the underlying graph rep-
resentation is not restricted in scalability, neither the graph depth nor the
graph width.
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Figure 7.2. spiral: Development of absolute program length (left) and relative effective
length (right) for different maximum bounds using crossover (cross). The less code
growth is restricted by the maximum complexity bound, the smaller the proportion of
effective code and the less it increases over a run. Average figures over 100 runs.

In both tables, absolute length and effective length increase with the max-
imum bound. Simultaneously, the proportion of effective code decreases.
Figure 7.2 shows the development of both the absolute program length and
the proportion of effective code (relative effective length) over an exem-
plary run for different bounds on maximum length. Absolute length in the
population converges quickly to the maximum during a run. This devel-
opment can only be delayed depending on how large a maximum bound
is configured and is characterized by an explosive increase of program
length in early generations. Unlimited exchange of instruction segments
during crossover causes this behavior. Another cause is that noneffective
code may grow almost without restrictions in linear GP since it does not
directly influence program fitness and emerges relatively easily.

The rate of effective code increases because this type of code may still
grow even if the absolute length of a program is already maximal. In
this way, noneffective code is replaced by effective code. Interestingly, the
proportion of effective code remains mostly constant over a run with the
highest maximum bound (1,000 instructions).

In general, a lower proportion of effective instructions in programs reduces
the effective step size of crossover, meaning that less effective instructions
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are exchanged. This is, however, not the case here for a higher maximum
program bound which leads to a larger absolute step size, on average, as
well as an increasing amount of effective code.6 As a result, more effective
instructions are exchanged.

For the same reason, the proportion of noneffective variations increases
only slightly compared to the proportion of noneffective code in Tables
7.13 and 7.14. We only note here that this is different for free instruction
mutations where a minimum step size causes the effectiveness of opera-
tions to depend more directly on the proportion of effective instructions.

7.6 Initialization of Linear Programs

The initialization of individuals is the first step of an evolutionary algo-
rithm. In genetic programming it determines the size, shape, and diversity
of programs in the initial population. Depending on the type of program
representation, different strategies may be developed. Popular methods
for initializing tree populations will be discussed in Section 8.1.2. In this
section we define and compare different initialization methods for the lin-
ear representation. Basically, the following forms are available:

� Free initialization creates initial programs randomly (standard case).

� (Fully) effective initialization builds initial programs completely from
structurally effective code, starting with the last instruction of a pro-
gram (see Section 6.2.3).

� Maximum initialization lets the absolute length of all initial programs
equal the maximum program length parameter.

� Variable-length initialization selects initial program lengths from a uni-
form distribution within a predefined range.

� Constant-length initialization enforces the same initial length for all
programs in a population.

These different strategies make reference to the initial absolute length of
programs. The initial effective length may vary freely and is controlled in-
directly through the initial absolute length. A fully effective initialization
allows higher effective diversity of initial programs without increasing the
total amount of genetic material.

6Recall that a larger amount of noneffective code implies a larger amount of effective code,
especially if only a few program registers are available.
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If programs are initialized with too large a size they may be less flexible
during evolutionary search, especially if the average step size of macro
variations is small. The minimum step size of instruction mutations lends
itself well to achieving best prediction quality by starting with relatively
small initial programs (see Tables 7.15 and 7.17). Moreover, both the
absolute size and the effective size of solutions will increase clearly by
effective mutations if a longer initial size is chosen. In general, it seems
to be more difficult for the evolutionary algorithm to follow a search path
from a complex region of the search space to another complex region with
better programs than it would be to start with programs of low complexity
and evolve them into programs with high complexity.

Table 7.15. mexican hat: Effects of initial program length on effective mutations (eff-
mut2, B0) using free initialization. Maximum program length is 200. Average results
over 100 runs after 1,000 generations.

Initial SSE Length Variations (%)

Length mean std. abs. eff. % constr. neutral noneff.

5 0.6 0.06 39 26 67 8.3 10 0

10 0.7 0.1 39 26 65 8.5 10 0

50 0.9 0.1 70 38 54 8.7 9 0

100 1.2 0.1 115 54 47 8.6 9 0

200 3.5 0.4 196 79 40 8.6 11 0

Table 7.16. mexican hat: Effects of initial program length on effective mutations (eff-
mut2, B0) using effective initialization. Maximum program length is 200. Average
results over 100 runs after 1,000 generations.

Initial SSE Length Variations (%)

Length mean std. abs. eff. % constr. neutral noneff.

5 0.6 0.06 36 25 69 8.5 10 0

10 0.4 0.05 40 28 69 8.6 9 0

50 1.0 0.1 72 48 67 8.6 9 0

100 2.5 0.2 120 77 64 8.4 11 0

200 6.0 0.5 196 118 60 7.7 16 0

Figure 7.4 shows for the example of the mexican hat problem, how the
program length develops when applying effective mutations with different
initial lengths. The effective length continuously increases during a run in
almost the same amount. Therefore, it strongly depends on the initializa-
tion, how large programs may become in the end. Apparently, maximum
mutation steps of one instruction are too small to be able to sufficiently
break up larger initial structures.
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Table 7.17. spiral: Effects of initial program length on effective mutations (effmut2,
B0) using free initialization. Maximum program length is 200. Average results over
100 runs after 1,000 generations.

Initial CE Length Variations (%)

Length mean std. abs. eff. % constr. neutral noneff.

5 10.1 0.5 50 46 92 2.1 20 0

10 11.3 0.5 55 50 91 2.1 20 0

50 14.2 0.6 82 69 85 1.9 21 0

100 16.8 0.6 128 100 78 1.7 24 0

200 22.3 0.6 197 136 69 2.0 23 0

Table 7.18. spiral: Effects of initial program length on effective mutations (effmut2,
B0) using effective initialization. Maximum program length is 200. Average results
over 100 runs after 1,000 generations.

Initial CE Length Variations (%)

Length mean std. abs. eff. % constr. neutral noneff.

5 10.0 0.5 50 46 92 2.2 20 0

10 8.6 0.5 53 48 91 2.1 21 0

50 16.4 0.6 83 74 89 2.2 21 0

100 22.7 0.6 132 116 87 2.2 22 0

200 31.0 0.5 198 175 88 3.4 19 0

In Figure 7.3 we can see, by comparison, that the more (effective) code
exists initially, the less the (effective) length grows in the course of the
evolutionary algorithm with unrestricted linear crossover, i.e., in standard
linear GP. Interestingly, the effective size converges to almost the same
value in the final generation, no matter how large the initial programs
were. Similar results have been observed with (unrestricted) segment
mutation. Apparently, larger step sizes allow (effective) programs to grow
almost independent of their initial (effective) size.

After a free initialization, neither with crossover nor with effective mu-
tation the effective length falls below its initial level. But a rapid drop
of effective length occurs at the beginning of runs in Figure 7.5 if longer
individuals were initialized fully effectively. This decrease has been found
with both benchmark problems and results from early deactivation of
code. However, the absence of inactive, that is noneffective, code in the
initial population reduces the emergence of such code during a run. As a
consequence, the effective code remains larger than with standard initial-
ization.



Analysis of Control Parameters 167

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

A
bs

ol
ut

e 
Le

ng
th

Generation

5
10
50

100
200

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

E
ffe

ct
iv

e 
Le

ng
th

Generation

5
10
50

100
200

Figure 7.3. mexican hat: Development of absolute program length (left) and effective
program length (right) for different inital lengths using free initialization and crossover
(cross). Average figures over 100 runs.
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Figure 7.4. mexican hat: Development of absolute program length (left) and effective
program length (right) for different initial lengths using free initialization and effective
mutations (effmut2, B0). Average figures over 100 runs.
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Figure 7.5. mexican hat: Development of absolute program length (left) and effective
program length (right) for different initial lengths using fully effective initialization and
effective mutations (effmut2, B0). Average figures over 100 runs. (Similar figures found
for the spiral problem.)
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From the comparison of Table 7.15 with Table 7.16 we can see that effec-
tive initialization results in worse performance for larger initial programs
than standard initialization, as is confirmed by a comparison of Table
7.17 with Table 7.18. A slightly better performance is obtained only with
constant initial length 10, probably due to a higher diversity of initial
effective solutions.

If the initial lengths are too small, many programs may be identical in both
their effective structure and their semantics. In particular, many initial
programs may have an effective length of zero. Initialization influences
diversity in such a way that both more or longer programs allow a higher
diversity. If variation is dominated by recombination the composition of
the initial population has a stronger influence on the success of solutions
(see also Section 7.4). This is another reason, besides its larger absolute
step size, why crossover may perform better with a higher amount of
initial genetic material. At least the mexican hat problem is better solved
with longer initial programs (see Tables 7.19 and 7.20).

Table 7.19. mexican hat: Effects of initial program length on crossover (cross) using
free initialization. Maximum program length is 200. Average results over 100 runs after
1,000 generations.

Initial SSE Length Variations (%)

Length mean std. abs. eff. % constr. neutral noneff.

5 15.0 1.5 179 60 33 4.7 29 25

10 15.5 1.4 180 58 32 4.4 29 25

50 7.4 1.0 180 61 34 4.8 26 23

100 5.4 0.6 184 63 34 5.1 25 21

200 6.9 0.6 200 73 37 5.3 25 19

Table 7.20. spiral: Effects of initial program length on crossover (cross) using free
initialization. Maximum program length is 200. Average results over 100 runs after
1,000 generations.

Initial CE Length Variations (%)

Length mean std. abs. eff. % constr. neutral noneff.

5 28.1 0.6 187 113 61 4.1 22 12

10 25.7 0.6 186 101 54 3.6 24 15

50 26.0 0.7 187 97 52 3.3 24 16

100 30.1 0.7 188 94 50 3.4 24 16

200 36.1 0.7 200 103 52 4.1 24 14

We have seen in Section 5.9.5 that smaller effective length may be main-
tained in linear programs by initializing programs partially with empty
instructions (explicit introns). Furthermore, the proportion of implicit in-
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trons is significantly reduced in this way and, thus, reactivations are much
less likely. For both reasons, crossover steps become smaller in terms of
the effective code. Figure 7.3 demonstrates that this may not be achieved
simply by increasing the initial program length. If program size is doubled
only, effective size will double, too.

In the experiments described above, all initial programs share the same
absolute length. One remaining question is whether variable-length pro-
grams can produce significantly better results. In general, we found that
a variable-length initialization changes prediction error and program size
only slightly if compared to a constant-length initialization with the same
average length. This is mostly due to the fact that random programs
may still differ in their effective length even if their absolute length is
constant. Also note that there is no relevant difference in performance if
the initial length is small. Only if initial programs are large enough and
fully-effective, variable length may outperform constant length.

7.7 Constant Program Length

Genetic programming usually evolves programs of a variable-length rep-
resentation. Typically, the population is initialized with small programs
that grow in the course of the evolutionary process. The traditional tree
representation requires that programs change size and shape for creating
successful solutions. Otherwise, if valid programs would be restricted to
a constant number of nodes or a certain shape of trees, variability and
chances of finding a solution may be quite small.

The imperative representation used in linear GP contains inactive code
that emerges almost independent of the composition of the set of program
components provided (see Section 3.2). The only precondition for this
special type of intron code is that the number of registers the program
can write into is larger than one. The existence of structurally inactive
code, together with the fact that data flow between registers is organized
as a graph, allows evolution of genetic programs without changing their
absolute size. Programs may thus be initialized with a certain absolute
length which remains constant during the entire run while the effective
length of the program may change.

The evolution of fixed-length programs requires that absolute program
length is determined by the user instead of being subject of the evolu-
tionary algorithm. This is a drawback first because the absolute length
may have a significant influence on prediction performance, and second
because programs have their maximum size already from the beginning
of a run. Thus, using a constant absolute program size is a combina-
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tion of maximum initialization and a restriction of program length. Both
techniques have been investigated separately in the two previous sections.

As it might have been expected, we have not found constant program
length to be a feasible alternative to a growing program length. With
effective instruction mutation, results were generally worse or at least
not better. With standard crossover, performance improved only for the
mexican hat problem and smaller fixed-length programs (undocumented).
Recall that this problem gained in both partial experiments above, i.e.,
a complexity control by a smaller maximum program size and a higher
diversity by longer initial code.

7.8 Summary and Conclusion

Different control parameters were examined in this chapter with respect
to their influence on linear GP. Some important results are summarized
in the following.

� The performance of linear GP strongly depends on the number of calcu-
lation registers. Smaller register numbers will restrict the expressiveness
of programs while larger numbers may increase the search space unneces-
sarily. The more registers are provided the more registers may be effective
and the lower will be the effectiveness degree of instructions. For func-
tional structure this means wider graphs with less connections per node.
An intermediate register number produced the best prediction results.
More tree-like structures, as may result from higher register numbers,
were usually not optimal.

� An initialization of all registers with input values achieved better results
in general than initializing additional calculation registers to constant
values or write-protecting the input registers.

� The question of whether a smaller or a larger population size leads
to more successful solutions could not be answered clearly (if compared
on the basis of the same number of evaluations). Instruction mutation
showed a significantly better performance in small populations for certain
problems. Basically, this depends on the size of the optimum solution. In
a smaller population programs grew larger, especially if the variation step
size was small.

� The relation of program size and fitness determines how much a problem
solution benefits from a higher bound on complexity. When using unre-
stricted recombination, linear programs grow quickly until the maximum
length is reached. This happens for both effective and noneffective code,
even if a larger upper bound led to a smaller proportion of effective code.
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Because a large maximum program length can still produce better results,
the graph-based linear representation is not restricted in scalability.

� Finally, we compared possible initialization methods for linear genetic
programs, including maximum and fully effective. In general, effective in-
struction mutation performed worse with a larger initial size of programs.
Apparently, small absolute step size of the operator is less suitable to
transform larger random structures. This was different for unrestricted
segment variation which can perform better with more initial code.



Chapter 8

A COMPARISON WITH TREE-BASED
GENETIC PROGRAMMING

In this chapter a comparison between the linear representation and the
traditional tree representation of genetic programming is performed. The
comparison examines prediction performance and model size based on
two collections of benchmark problems that have been composed of ar-
tificial test problems and of real-world applications from bioinformatics,
respectively. Both linear GP and tree-based GP use crossover for macro
variations. Additionally, we apply the linear GP variant from Section
6.2.3 which works exclusively with (effective) instruction mutations to
compare its performance for a larger number of problems. But first of all,
we introduce tree-based GP in some further detail.

8.1 Tree-Based Genetic Programming

The earliest and most commonly used approach to genetic programming
is the evolution of tree structures represented by variable-length expres-
sions from a functional programming language, like S-expressions in LISP
[64]. This classic approach is referred to as tree-based genetic programming
(TGP). The inner nodes of such program trees hold functions (instruc-
tions). The leaves hold terminals which are input variables or constants.

Pure functional programs, by definition, do not include assignments to
memory variables as is the case in imperative programs. These have to be
incorporated explicitly by means of special functions which realize read
and write access to an external memory [64, 134]. Such “imperative” ex-
tensions are, however, not in common use because they do not necessarily
provide a significant increase in expressiveness of functional programs.
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However, memory – usually in the form of a stack – is needed during the
interpretation of program trees in order to save intermediate results of
evaluated subtrees (see also Section 3.3.3). While a program tree is evalu-
ated the nodes are traversed in a predefined order (preorder or postorder).
The value of a node is calculated by applying its function to the results
of its child nodes (subtrees) which have to be evaluated first. Then the
value is returned to the parent node. At the end of execution the root
node holds the final program output.

Assignments to an external memory may be used if a program solution is
supposed to return more than one output. Otherwise, multiple outputs
could be read from a tree program at specially designated inner nodes,
apart from the tree root [79]. Finally, multiple program outputs may be
implemented such that individuals are multiple expressions (trees) which
calculate one output each.

8.1.1 Tree Genetic Operators

Crossover is traditionally the genetic operator of choice used for recom-
bining old solutions into new and potentially better solutions. Figure 8.1
illustrates program representation and subtree crossover in tree-based GP.
In each parent individual the crossover operator selects a node (crossover
point) randomly and swaps the two corresponding subtrees to create two
offspring individuals. Function (inner) nodes might be chosen as crossover
points with a higher probability than terminal nodes. Koza proposes a 90
percent selection of inner nodes [64].

The mutation operator exchanges single terminals or function identifiers.
Each tree node may be selected as a mutation point with the same proba-
bility. A node mutation replaces a random function by a legal alternative
from the function set that requires the same number of operands. In doing
so, loss or creation of complete subtrees is avoided. Functions may not be
exchanged with terminals. A certain amount of constants is maintained
in programs by fixing user-defined probabilities for constant and variable
terminals.

Alternatively, a subtree mutation replaces a complete subtree by a random
subtree. For creation of a new subtree the same method may be applied
that is used for initialization of programs. In contrast to crossover, how-
ever, it has to be explicitly guaranteed that subtree mutation is bias-free.
This will be the case if inserted subtrees are on average the same size as
deleted subtrees.

In standard TGP crossover is aborted and its effects are reversed, if one of
the offspring exceeds the maximum complexity bound. Since the parent
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Figure 8.1. Crossover in tree-based GP. Subtrees in parents are selected and ex-
changed.

individuals are not modified in this case, they neither have to be repro-
duced in a steady-state population nor have their fitness re-evaluated. The
maximum depth parameter limits the maximum length of a path from the
root to a leaf. If only depth is limited, as practiced in [64] (using a maxi-
mum depth of 17) programs may still become extremely large in number
of nodes, especially if a larger number of generations is considered. In
order to tighten the bound a maximum limit may be placed on both the
number of nodes and the depth of tree programs.

In order for tree crossover to remain executable after parent individu-
als have reached their maximum complexity, one method may exchange
equally large subtrees. This, however, restricts the free selection of varia-
tion points drastically. For the comparison of this chapter we decided to
use a variant that limits the freedom of variation the least by executing
the crossover operation in any case. If an offspring tree becomes too large
in the number of nodes, the node at the crossover point is replaced by
one of its direct successors (after crossover). The old node and all its
other subtrees are deleted. This step is repeated until the total tree size
falls below the maximum bound. Note that in contrast to selecting valid
subtrees already in the parent individuals (before crossover) the positions
of crossover points can be selected more freely here.
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Recall from Section 5.7.1 that crossover in linear GP is always possible
by exchanging equally long instruction segments if otherwise the maxi-
mum program length would be exceeded. This is mostly due to a higher
variability (weaker constraints) of the imperative representation which al-
lows the existence of noneffective code not connected to the root in the
equivalent functional program.

In general, using genetic programming without any complexity bound
is rather uncommon since unnecessarily large solutions are not desirable.
First, they are less flexible during genetic manipulations. Within a certain
number of generations reasonable progress may only be made up to a
certain complexity of solutions. Otherwise, too complex variations might
be necessary to find improvements. Second, larger programs increase the
processing time both during and after the search. Third, interpretation
of larger solutions is potentially more difficult. Finally, the principle of
Occam’s Razor states that shorter (equally fit) solutions are more general
than longer ones. For these reasons low complexity is an important quality
of genetic programs, besides a high prediction performance.

8.1.2 Initialization of Tree Programs

Genetic programs are created randomly from elements of the function and
terminal set. Different initialization methods are applied in tree-based GP
that control the composition of genetic material in the initial population.

� The full method generates only full trees, i.e., trees with all terminal
nodes on the same level. In other words, the path length from any terminal
node to the root of the tree is the same.

� The grow method chooses any node (function or terminal) for the root,
then recursively calls itself to generate child trees if these are needed. If
the tree reaches the maximum depth, all further nodes are restricted to
be terminals and growth will stop. The shape and size of trees strongly
depends on the probabilities by which a terminal node or a function node
is selected.

� The half-and-half method merely chooses the full method 50 percent of
the time and the grow method the other 50 percent.

All of these generation methods can be specified with a “ramp” of initial
depth values instead of using the same depth. For instance, if the ramp
is 2–5, then 25 percent of the trees will be generated with depth 2, 25
percent will be generated with depth 3, and so on. Ramped half-and-half
is typically the method of choice for initialization since it produces a wide
variety of tree shapes and sizes.
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8.2 Benchmark Problems

The benchmark problems that are used in this chapter for a comparison
with tree-based GP comprise three problem classes. These are classifica-
tion, regression, and Boolean functions.

In general, a GP benchmark may be regarded as a combination of problem
(data set) and instruction set. The difficulty of a problem strongly de-
pends on the composition of the function set in GP since this set may, in
principle, hold any function – including the optimal solution of a problem
should this be known (trivial case). For artificial benchmark problems
for which the optimal solution is already known in advance the absolute
best configuration is not always desired. Instead, the problem difficulty is
scaled over the set of elementary functions provided. An optimization of
the function set may be interesting in more application-oriented research
or if one wanted to compare the performance of GP with other methods.

8.2.1 GP Benchmarks (GPProben)

The first set of problems tested is referred to as GPProben. Some prob-
lems became popular benchmarks in the GP community or in the machine
learning community, respectively. Others have already been used in exper-
iments of this document, but not necessarily with the same configuration.
Table 8.1 summarizes all relevant problem characteristics and problem-
specific configurations. These comprise dimensions of data set, fitness
function, and function set.

Table 8.1. Complexity and configuration of GPProben problems. Maximum input
and output ranges are rounded. Set of constants is {0, 1} for Boolean problems and
{1, .., 9} otherwise.

Problem #Inputs Input Output #Samples Fitness Function Set

Range Range

11multiplexer 11 {0, 1} {0, 1} 2048 SE {∧,∨,¬, if}
even5parity 5 {0, 1} {0, 1} 32 SE {∧,∨,¬}
even8parity 8 {0, 1} {0, 1} 256 SE {∧,∨,¬, if}
two chains 3 [−2, 2] {0, 1} 500 CE {+,−,×, /, sin, cos, if >}
spiral 2 [−2π, 2π] {0, 1} 194 CE {+,−,×, /, sin, cos, if >}
double sine 1 [0, 2π] [−1, 1] 100 SSE {+,−,×, /}
distance 6 [0, 1] [0, 1] 300 SSE {+,−,×, /,

√
x, x2}

mexican hat 2 [−4, 4] [−1, 1] 256 SSE {+,−,×, /, ex, x2}

Among Boolean functions, the 11multiplexer function calculates 1 of 8 in-
put bits as output value that is singled out by 3 address bits [64]. The
evenNparity functions compute 1 if the number of set input bits is even,
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otherwise the output is 0. Note that the lower-dimensional parity prob-
lem even5parity is treated without using Boolean branches here. Fitness
function for Boolean problems is the sum of output errors (SE).

The two classification problems, spiral and two chains, are described in
Section 5.8.1 and Section 11.4.1, respectively. For all classification prob-
lems in this chapter the classification error (CE) defines program fitness.
The classification method is always interval classification which holds a
program output gp(�ik) to be correct for an input vector �ik as long as the
distance to the defined class identifier ok ∈ {0, .., m} is smaller than 0.5,
i.e., |gp(�ik) − ok| < 0.5.

The one-dimensional regression problem double sine requires a sine func-
tion to be approximated by arithmetic functions over an input range of
two periods. For a description of the two-dimensional regression mexican
hat and the six-dimensional distance problem see Sections 5.8.1 and 11.4.1.

8.2.2 Bioinformatics Problems (BioProben)

The second set of benchmarks BioProben contains real-world classifi-
cation problems. Most problems originate from the UCI Repository of
Machine Learning Databases [88], and all have a biological background.
Typically, such problems feature high dimensional input data. The origi-
nal data sets have been edited slightly.

Table 8.2. Complexity of BioProben data sets. For all these classifications problems
a common fitness function (CE) and function set {+,−,×, /, xy, if >, if ≤} are used.

Problem #Inputs #Classes Input Output #Samples

Range Range

splice junction 60 3 {1, .., 4} {0, 1, 2} 1594

splice junction 2 60 2 {0, .., 3} {0, 1} 768

promoters 57 2 {0, .., 3} {0, 1} 106

ecoli 7 8 [0, 1] {0, .., 7} 336

helicases 25 2 [0, 1] {0, 1} 78

soybean 35 19 {0, .., 6} {1, .., 19} 307

wine 13 3 continuous {1, .., 3} 178

dermatology 34 6 {0, .., 3} {1, .., 6} 366

Table 8.2 summarizes all features of the BioProben data sets, includ-
ing input dimension, number of output classes, and number of (training)
samples. Most input ranges are discrete and comprise possible states of
attributes.
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� Splice junctions are points on a DNA sequence at which “superflu-
ous” DNA is removed during the process of protein creation in higher
organisms. The splice junction data set is composed of sequences of 60
nucleotide positions extracted from the DNA of primates. The problem
represented by this data set is to recognize boundaries between exons
(the parts of DNA sequence retained after splicing) and introns (the parts
of DNA sequence spliced out). The problem consists of two subtasks:
recognizing exon/intron boundaries (called EI sites), and recognizing the
inverse, intron/exon boundaries (IE sites). In the biological community,
IE borders are also referred to as acceptors while EI borders are referred
to as donors. About 50 percent of the data comprise non-splice examples
that have been taken from sequences known to not include a splicing site
at all. The nominal attribute values A, G, T, and C – representing the
four nucleotide bases from which DNA is built – have been replaced by
numeric values (see Table 8.2). Some unknown or uncertain characters
are represented by 0. The problem comes with three data sets, one for
each class. The first half of each set is used for training, the following
quarter of the set for validation, and the last quarter for test purposes
(see below). A second data set splice junction 2 is derived by excluding
all non-splice examples. This results in the simpler task to distinguish IE
sites from EI sites only.

� Another problem that deals with the classification of DNA sequences
is promoters. A promoter initiates the process of gene expression, i.e., the
biosynthesis of a protein. The task is to predict whether subsequences of
E. coli DNA belong to a region with biological promoter activity or not.
Each subsequence holds 57 nucleotides.

� The ecoli data require the cellular localization sites of proteins in E. coli
bacteria to be predicted from several values measured. In doing so, eight
classes which correspond to localization sites have to be discriminated.

� Helicases is an image classification problem. Two different structures
of hexametric helicases of DNA strands [28] need to be discerned from
electron microscopy images.

� A diagnosis of 19 different soybean diseases has to be learned from the
soybean data. 13 percent of the data samples suffer from missing input
values (completed here by constant value 7).

� The task described by the wine data set is to discern three sorts of wine
by their constituents resulting from chemical analysis.

� The last problem comes from the medical domain, more precisely the
differential diagnosis of erythemato-squamous diseases is a dermatology
task. The difficulty of this problem results from the fact that all six
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diseases share most clinical and histopathological features of erythema
with only very little differences.

8.2.3 Generalization Data

The most important capability of a prediction model is its ability to gen-
eralize from a given set of input-output examples to unknown (unlabeled)
data inputs. The generalization ability strongly depends on the corre-
lation of training data to generalization data. As far as possible, both
data sets should cover the same region of the data space. In general,
the problem definition defines the domains of input and output data, in-
cluding dimensions and attribute ranges. Especially in complex or higher
dimensional data spaces, however, there is a higher probability that the
correlation between two randomly selected sets of data points is poor.
Moreover, generalization performance depends on the size of the training
data set and how regularly training data are distributed over data space.

These problems occur in particular when dealing with data derived from
a real problem domain. Often it comprises much more data points than
may be sufficiently represented in the training set. On the other hand,
the available amount of data samples is very often limited. But even if
both are not the case, data samples may be difficult to select uniformly
distributed if the structure of the data space is unknown. As a result,
correlation of training data and generalization data may be low.

The use of artificial test problems may give a better understanding for
what types of problems a method is suitable and for what types it is not.
Moreover, since the problem structure is known, artificial benchmarks give
a better idea of the problem difficulty. The difficulty is often scalable over
slight modifications of the problem definition.

The identification of generalization data is straightforward for the regres-
sion problems. For these problems generalization can be called interpo-
lation. For the mexican hat problem, for instance, test data points are
selected randomly between the regular grid of training data points (see
Figure 5.2). For the distance problem generalization data are created in
the same way as the training data by calculating the Euclidean distance
for different random pairs of 3-dimensional points from the same input
ranges.

Since we do not want to separate two “clouds” of fixed data points only
in the case of the two chains problem (see Figure 11.5), the data space is
supposed to include all points that lie within a certain distance from two
virtual circles in three-dimensional space.
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In some data sets of the BioProben collection, e.g., in ecoli, the dis-
tribution of data samples over the output classes is rather non-uniform
with some classes under-represented. In other data sets the total number
of samples is relatively small compared to the number of inputs, e.g., in
promoters.

In both cases it is difficult to split a data set for training, validation and
testing. Results might leave too much to chance to be general. One
possibility to get more reliable generalization results with relatively small
data sets is to apply n-fold cross validation, a method that divides data
into n disjoint subsets and repeats the training process n times while
each time another subset is excluded from training and is used instead for
validation. We have not done this here. Instead, we restrict ourselves to
the problems with sufficient amounts of data, like splice junction.

Following the evolutionary algorithm of Section 2.3 the generalization abil-
ity of best-so-far individuals is checked during training by recalculating
their error on a validation set. At the end of a run the individual with
minimal validation error is applied again on the test set. Except for the
spice junction problem, the validation and the test set contain about as
many examples each as the training set (see Table 8.1).

8.3 Experimental Setup

A comparison between completely different methods, as performed for
neural networks and genetic programming in Chapter 4, may be based on
prediction performance only. In this case, simply the best or nearly the
best configuration may be selected for each approach. If the approaches
tested are more related, however, similar parameters should be configured
similarly to guarantee a fair comparison. This is more important, the less
two approaches differ. Otherwise, their main differences can hardly be
made responsible for a potential difference in performance. For the same
reason comparing results from the literature may be crucial. Comparabil-
ity of results can be guaranteed best within the same system environment.

8.3.1 A Multi-Representation GP System

Experiments in this chapter have been performed with the multi-
representation GP system [20] that comprises different representation
forms for genetic programs, including trees and linear structures. Such a
platform allows the user to test different representation types with mini-
mal implementation overhead, i.e., without changing the adaptation of the
system to a certain problem. The fairest comparison of GP representa-
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tions is achieved by using the same system environment as far as possible.
Among other things, this includes a common evolutionary algorithm, a
common selection method, and a general definition of instruction set and
terminal set. In this way, the probability is reduced that slightly differ-
ing implementation details or parameter configurations may influence the
results.

8.3.2 Complexity of Programs

The following comparison between a tree representation and a linear rep-
resentation of genetic programs tries to be as fair as possible, especially
in terms of the maximum complexity of programs. If we assume that all
program parts are executed this is true for the evaluation time as well.
In particular, the same maximum number of instructions (200) is allowed
in both kinds of programs. For program trees this is the number of in-
ner (non-terminal) nodes while for linear programs the number of lines is
counted. The lower bound of absolute program size corresponds to one
instruction (node).

Alternatively, it may be taken into account that not all instructions of
the linear representation – in contrast to a tree representation – are struc-
turally effective (after Definition 3.4). Remember that such noneffective
instructions may always be removed completely from a linear program
before it is executed and, therefore, do not cause computation costs (see
Section 3.2.1). Thus, the actual solution is represented by the effective
program only.

From that point of view, it may be a realistic alternative to restrict the
effective length of a linear program instead of its absolute length. This
can be realized, for instance, by repeating a crossover operation until a
maximum number of effective instructions is met. In so doing, a maxi-
mum of n inner tree nodes is regarded as being equivalent to n effective
instructions. Such a comparison would still be fair in terms of the same
maximum number of executed instructions.

The maximum absolute length may not be left completely unrestricted,
however. First, a higher amount of noneffective code usually implies
larger effective code (see e.g. Section 7.5). Second, absolute (and effective)
crossover step sizes are increased because longer segments are exchanged.

We know from Section 5.9.1 that there is another important argument for
restricting the absolute program length and leaving the effective length to
be influenced only indirectly by this. The structurally noneffective code
takes away pressure from the effective code to grow and to develop se-
mantic introns as a protection against larger crossover steps. In other
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words, the presence of noneffective code puts an implicit parsimony pres-
sure1 on effective code size. Therefore, the structurally noneffective code
is also one reason why effective LGP solutions may be more compact in
size than TGP solutions.

The second reason why linear genetic programs can manage with a smaller
number of instructions is that their functional structure describes a di-
rected acyclic graph (DAG) and is not as restricted as a tree structure.
Among other things, the higher freedom of connections between the pro-
gram functions allows the result of subsolutions (subgraphs) to be reused
multiple times. Therefore, the same maximum number of instructions will
allow imperative programs to express more complex solutions than tree
programs.

8.3.3 Parameter Settings

Table 8.3 lists the parameter settings for both GP approaches. All choices
are supposed to be general and have not been adapted to a specific prob-
lem. Problem-dependent parameters like the fitness function and the
function set have been introduced already, together with the benchmark
problems in Section 8.2.

Table 8.3. General parameter settings for linear GP (left) and tree-based GP (right).

LGP

Parameter Setting

Number of generations 500 (1,000)

Population size 500

Maximum program length 200

Initial program length 10–30

Initialization method random

Number of registers #inputs+10

Macro variation rate 90%

Micro mutation rate 10% (100%)

Tournament size 2

Instructions with constant 50%

TGP

Parameter Setting

Number of generations 500 (1,000)

Population size 500

Maximum operator nodes 200

Maximum tree depth 17

Initial tree depth 4–7

Initialization method ramped

Crossover rate 90%

Node mutation rate 10% (100%)

Tournament size 2

Constant Terminals 25%

General conclusions can be drawn about the performance of the two GP
variants only, if parameters special for one variant are not explicitly op-
timized for each problem. For linear GP we allow 10 additional registers
besides the required minimum number of (writable) registers that hold
inputs. All registers are uniformly initialized with input data such that

1For an explicit parsimony pressure see Section 10.8.3.
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each input value is assigned to about the same number of registers. Only
if the number of inputs is already much larger than 10, as in case of most
BioProben tasks, additional registers are not provided. In this case, the
total number of registers may be sufficiently high already.

The average initial size of programs is around 20 instructions in all exper-
iments. In particular, as many instructions that are used on average in
initial linear programs as (inner) nodes, are used in initial tree programs.
In linear GP this is realized simply by choosing the initial program lengths
uniformly distributed in an appropriate range. In tree-based GP we apply
the ramped-half-and-half method (see Section 8.1.2) which is controlled
by a maximum and a minimum depth of initial trees. This results in a
more probabilistic configuration of the initial program size in terms of the
number of operator nodes. Note that the maximum possible number of
nodes in a tree of a certain depth depends on the arity of nodes.

A balanced ratio of population size and generations has been chosen to
guarantee a sufficient number of evaluations per individual, evolutionary
progress, and diversity (see Section 7.4).

With similar complexity bounds, the same steady state EA has been cho-
sen, described in Section 2.3, including the same selection method, tour-
nament selection. Of course, the genetic operators are highly specific for
a representation type. Both linear crossover and tree crossover are unre-
stricted in terms of the maximum size of exchanged subprograms.

As mentioned before, linear crossover, while operating on the imperative
code, may affect multiple crossover points on the functional level. Tree
crossover, however, always affects one crossover point. Hence crossover
may be supposed to be more destructive in linear GP. On the other hand,
small pieces of code may be exchanged at all parts of the linear represen-
tation and (structural) introns may be easily created at each position in
a linear program to reduce the effective step size. For the tree represen-
tation, both are more difficult to achieve or involves stronger restrictions
on the variation freedom (see Section 8.5).

All variations including both crossover and mutations are induced effec-
tively for linear GP. That is, each genetic operation alters at least one
effective instruction. Remember that operations on program trees are al-
ways fully effective in this sense, because structurally noneffective code is
not defined (see Section 3.2). For linear crossover it is sufficient to guaran-
tee the effectiveness of deleted segments (effdel, see Section 5.7.4). Then
noneffective crossover might only be the result of exchanges of effectively
identical code, which is very unlikely. In addition, we compare a pure
mutation-based variant of LGP that applies effective mutations (effmut2,
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B1, see Section 6.2.3) as a macro operator with a minimum segment length
of one instruction.

There are only two differences between the parameter configurations used
for GPProben and BioProben. First, twice as large a population size
(of 1,000 individuals) is used in the latter collection of benchmark prob-
lems. Second, since the average input dimension is significantly higher
for most BioProben tasks, micro (node) mutations are always applied
in combination with crossover. For GPProben tasks only one genetic
operation is executed per individual. Both a larger population size and a
high mutation rate guarantee a higher code diversity in the population.

8.4 Experiments and Comparison

8.4.1 Prediction Quality and Complexity

Tables 8.4 and 8.5 show the best and the average prediction performance
of 100 best-of-run solutions that have been found with tree-based GP
and with linear GP, respectively, for the GPProben problems. Program
size is given by both the number of operator nodes and the tree depth
in TGP. In LGP the absolute and effective program length are distin-
guished. Each complexity measure is averaged over all programs of a run
(and over 100 independent runs). Because the execution of programs dur-
ing fitness calculations is by far the most time-consuming step, average
effective complexity is directly related to computational overhead of each
GP variant.

When comparing the prediction errors of both GP approaches, most test
problems are better solved by linear GP (except for distance). In general,
the difference is clearest for discrete problems, including Boolean functions
and classifications. In particular, much higher hit rates have been found
with 11multiplexer, even8parity and two chains. Among the continuous
(regression) problems, the difference in error is most significant for the
difficult mexican hat problem.

In all test cases the size of tree programs is much larger in Table 8.4 than
the effective program length in Table 8.5. Because both measurements
count the number of executed instructions, they may be directly com-
pared. The average absolute length of linear programs is similar for all
problems and comes typically close to the maximum limit of 200 instruc-
tions.

Table 8.6 documents a much higher prediction quality in linear GP for
all eight test problems when using instruction mutations instead of un-
restricted linear crossover. Especially for most discrete problems we ob-
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Table 8.4. GPProben: Prediction quality and program size using crossover-based
TGP. Average results over 100 runs after 500 generations. Average program size given
in operator nodes.

Problem Error #Hits Size Depth

best mean std.

11multiplexer 0.0 186.0 12.1 10 138 15

even5parity 2.0 8.3 0.2 0 143 15

even8parity 0.0 68.6 2.1 1 179 11

two chains 0.0 13.4 1.1 5 146 15

spiral 17.0 36.0 0.9 0 152 15

double sine 0.2 8.7 0.8 0 147 15

distance 0.0 6.8 0.5 0 68 13

mexican hat 0.5 11.6 1.1 0 81 14

Table 8.5. GPProben: Prediction quality and program size using crossover-based
LGP. Average results over 100 runs after 500 generations.

Problem Error #Hits Length

best mean std. abs. eff. %

11multiplexer 0.0 92.0 9.1 31 189 88 46

even5parity 1.0 8.4 0.3 0 173 46 26

even8parity 0.0 25.9 2.2 22 167 88 52

two chains 0.0 4.7 0.5 24 186 79 42

spiral 7.0 24.6 0.5 0 187 87 46

double sine 0.6 7.7 0.7 0 181 48 27

distance 0.6 8.7 0.3 0 185 31 17

mexican hat 0.05 3.2 0.3 0 189 37 19

Table 8.6. GPProben: Prediction quality and program size using mutation-based
LGP. Average results over 100 runs after 500 generations.

Problem Error #Hits Length

best mean std. abs. eff. %

11multiplexer 0.0 2.3 1.1 94 101 83 82

even5parity 0.0 1.3 0.1 38 77 43 55

even8parity 0.0 1.6 0.3 68 101 85 84

two chains 0.0 0.8 0.1 50 96 77 80

spiral 0.0 10.4 0.4 1 93 80 86

double sine 0.04 2.9 0.3 0 76 45 59

distance 0.0 2.9 0.2 1 74 36 48

mexican hat 0.01 1.0 0.1 0 79 39 49
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Table 8.7. BioProben: Prediction quality and program size using crossover-based
TGP. Average results over 50 runs after 500 generations. Average program size given
in operator nodes.

Problem Error #Hits Size Depth

best mean std.

splice junction 211.0 386.0 8.2 0 138 15

splice junction 2 14.0 36.1 2.2 0 137 15

promoters 0.0 5.8 0.6 2 142 15

ecoli 37.0 73.2 2.2 0 151 15

helicases 0.0 2.1 0.1 6 148 14

soybean 79.0 153.5 6.3 0 134 14

wine 0.0 17.4 1.5 2 147 14

dermatology 4.0 57.4 4.8 0 134 14

Table 8.8. BioProben: Prediction quality and program size using crossover-based
LGP. Average results over 50 runs after 500 generations.

Problem Error #Hits Length

best mean std. abs. eff. %

splice junction 78.0 189.1 10.6 0 160 58 36

splice junction 2 6.0 18.4 1.1 0 163 66 40

promoters 0.0 1.7 0.2 8 181 54 30

ecoli 36.0 54.0 1.4 0 180 77 43

helicases 0.0 1.4 0.1 12 184 79 43

soybean 67.0 95.3 2.2 0 186 70 38

wine 0.0 2.5 0.2 3 138 87 63

dermatology 4.0 14.3 1.3 0 186 69 37

Table 8.9. BioProben: Prediction quality and program size using mutation-based
LGP. Average results over 50 runs after 500 generations.

Problem Error #Hits Length

best mean std. abs. eff. %

splice junction 52.0 97.4 5.2 0 140 110 78

splice junction 2 5.0 11.9 0.7 0 127 104 82

promoters 0.0 0.3 0.1 30 111 89 80

ecoli 22.0 32.2 0.8 0 98 86 88

helicases 0.0 0.7 0.1 36 105 87 83

soybean 30.0 55.6 2.4 0 111 94 84

wine 0.0 1.2 0.1 9 118 103 87

dermatology 2.0 4.3 0.3 0 112 92 82
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serve: Not only is the average prediction error significantly smaller, but
the optimal solution has been found in many more runs, which is indi-
cated by significantly higher hit rates. Since all variations are effective,
the difference in performance may be accredited mostly to the difference
in variation step size.

A parsimony effect of both maximum program length and noneffective
code is responsible for a very similar effective size of solutions that has
been found with crossover in Table 8.5 and with instruction mutations in
Table 8.6. This might be evidence that the proportion of semantic introns
in effective programs is rather small. At least it shows that a difference in
(effective) program size may hardly be responsible for the large difference
in prediction quality here.

The corresponding results for the BioProben collection of (classification)
problems are printed in Tables 8.7 to 8.9. For all BioProben problems
the average performance is higher with LGP. Concerning the quality of
best solutions this is only true for the splice junction. In all other problem
cases best results are similar.

The better performance in best and average prediction that has been found
with effective mutations shows again – for a wider range of problems than
in Chapter 6 – that this operator clearly outperforms linear crossover.

For some problems average effective length is significantly larger when
using instruction mutations than has been found with linear crossover
(cf. Tables 8.8 and 8.9). We can explain this by the fact that a certain
amount of noneffective code will always emerge with crossover since the
survivability of programs depends on this type of code. Together with
a maximum bound, this restricts the growth of effective code, as dis-
cussed above. Another argument is the relatively high input dimension
of BioProben problems. This requires the use of many registers in pro-
grams. Since the applied mutation operator creates each new instruction
effectively, the proportion of effective code is almost independent of the
number of registers (see Section 7.1).

8.4.2 Generalization Ability

The generalization results for regression problems in Tables 8.10 to 8.12
demonstrate that both validation error and test error come close to the
training error (in Tables 8.4 to 8.6). That is, a variation operator that
improves training performance improves generalization performance in al-
most the same amount. We therefore may safely assume that correlation
between training data and generalization data is high.
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Table 8.10. Generalization ability using crossover-based TGP.

Problem Validation Error #Hits Test Error #Hits

best mean std. best mean std.

two chains 0.0 10.9 0.6 1 1.0 11.9 0.6 0

splice junction 130.0 208.3 3.7 0 144.0 212.2 3.4 0

distance 0.0 6.9 0.6 0 0.0 7.3 0.5 0

mexican hat 0.4 15.9 1.5 0 0.4 16.2 1.4 0

Table 8.11. Generalization ability using crossover-based LGP.

Problem Validation Error #Hits Test Error #Hits

best mean std. best mean std.

two chains 0.0 7.9 0.5 2 2.0 8.4 0.4 0

splice junction 69.0 120.3 5.6 0 55.0 123.8 5.9 0

distance 1.4 10.3 0.3 0 1.2 9.6 0.3 0

mexican hat 0.03 3.3 0.4 0 0.03 3.6 0.5 0

Table 8.12. Generalization ability using mutation-based LGP.

Problem Validation Error #Hits Test Error #Hits

best mean std. best mean std.

two chains 0.0 4.6 0.3 6 2.0 5.1 0.3 0

splice junction 59.0 88.7 3.1 0 57.0 89.7 3.2 0

distance 0.0 3.5 0.3 1 0.0 4.0 0.3 1

mexican hat 0.006 1.1 0.1 0 0.006 1.3 0.1 0

Generalization errors of the classification problems tested are more differ-
ent from training error,2 especially when using effective mutations. This
may be attributed to the fact that both problem solutions apply branches.
On the whole, branches improve training performance such that they sup-
port a specialization to the training examples. Without using branches
the three prediction errors become more similar (undocumented), but all
are worse than with branches. If branches are essential for finding the op-
timal solution or allow a significantly higher fitness during training, they
may not lead to a worse generalization.

The generalization errors are slightly more similar than the training errors
when comparing different representations, on the one hand, or different
genetic operators, on the other hand. Obviously, a genetic operator that
performs better on the training set may not necessarily do the same on

2Note that validation set and test set of splice junction are half as large as the training set.
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unknown data if this originates from a different part of the data space.
Note that it is training fitness that is influenced most directly by the
performance of a genetic operator.

8.5 Discussion

Instruction mutations vary the length of imperative programs in minimal
steps. In the functional equivalent of a program only one operator node
is inserted in or deleted from the corresponding program graph, together
with its incoming and outgoing edges. First, the imperative representation
allows insertions or deletions of code to be permanently small at each
position, because the degree of freedom is higher in a directed acyclic
graph than in a tree, by definition.

Second, structurally noneffective code parts in linear programs may be
temporarily disconnected from the effective graph component (see Sec-
tion 3.3). Effective instruction mutations do not prohibit such disconnec-
tions (deactivations) of code (see also Section 6.2.4). On the one hand,
the coexistence of inactive (disconnected) code in programs avoids an ir-
recoverable loss of code and allows its reactivation (reconnection). On the
other hand, multiple connections of nodes in the graph structure reduce
the probability for disconnections. Also, disconnections decrease implic-
itly in the course of a run as a result of an increasing connectivity of
instruction nodes, as will be demonstrated in Section 9.7.2.

Both are different in traditional tree-based GP. Due to higher constraints
of the tree structure, deletions or insertions of subtrees are not possible
as separate operations. A tree structure requires a removed subtree to be
directly replaced at the same position. In linear GP the register identi-
fiers (pointers) are encoded in the imperative instructions. If those are
disconnected by deactivation, they are either automatically reconnected
to other instructions or represent a terminal (in the graph structure).

Lopez et al. [79] extended the traditional GP approach by inactive sub-
trees that remain part of the representation. Special (inner) nodes do not
execute their subtrees but hold a pointer that redirects the data flow to
another part of the (effective) program. Such structural introns may be
reactivated after variation when being reconnected to the result-producing
code.

(Macro) mutations changing size and shape of trees are less likely to have
small effects on higher tree levels. At least deletions of larger subtrees
may not be avoided without significantly restricting the freedom of varia-
tion. In a tree each node is connected only by one edge on a unique path
to the root. Since the tree representation does not allow unconnected
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components, a disconnection of code always means its loss. Neverthe-
less, the probability for such larger mutation steps may be reduced as far
as possible in TGP. Therefore, three elementary tree operations may be
distinguished – insertion, deletion and substitution of a single node [98]:

(1) If an operator node is inserted in a tree it replaces a random node
which becomes a successor of the new node. All remaining successors
of the newly inserted node become terminals. Since most instructions
usually require more than one operand, almost each insertion will create
a new terminal node in this way.

(2) Accordingly, if a random inner node is selected for deletion it is re-
placed by one of its successors, e.g., the largest subtree. All other succes-
sors of the deleted node will be lost, including the corresponding subtrees.

(3) A node may be substituted by another node of the same arity only.
In particular, terminal nodes are exchanged only by other terminals then.
Alternatively, nodes may be substituted freely while supernumerary sub-
trees are completed by a terminal or deleted, respectively.

In [98] these minimum tree mutations are applied in combination with
search techniques like simulated annealing and hill climbing that are both
operating with a single search point (individual program). In [99] the au-
thors combine these search techniques with a standard population-based
search by tree crossover. Unfortunately, the performance of these muta-
tions is not compared with crossover while using the same search method.

8.6 Summary and Conclusion

After an introduction to tree-based GP, we compared this more traditional
approach with linear GP by using two collections of benchmark problems.
The comparison was supposed to be fair particularly with regard to the
(maximum) complexity of genetic programs.

� With unrestricted crossover, LGP performed better than TGP and pro-
duced more compact solutions in terms of the number of executed instruc-
tions. Especially for (real-world) classification problems, the difference in
performance between a tree representation and a linear representation was
significant.

� Even better prediction results were obtained for linear GP by means of
effective instruction mutations. This was especially clear for the applied
GP benchmarks. Results showed a smaller difference in performance be-
tween the two representation forms than between the two linear genetic
operators applying maximum (unrestricted) or minimum step sizes. This
recommends a general use of minimum mutation steps in linear genetic
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programming and confirms our results from Chapter 5 and Chapter 6 for
a wider range of applications.

� We also argued why, first, LGP allows smaller solutions and, second, a
minimization of growth and shrink operations may be incomplete in TGP.
Both may be reduced to the two fundamental differences of representations
that have been outlined already in Chapter 1. In the first case, this means
that effective linear programs may be more compact in size because of a
multiple usage of register content and an implicit parsimony pressure by
structurally noneffective code. In the second case, stronger constraints
of the tree structure and the lack of non-contiguous components prohibit
that structural step sizes can be minimal.
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ADVANCED TECHNIQUES AND
PHENOMENA



Chapter 9

CONTROL OF DIVERSITY AND
VARIATION STEP SIZE

In this chapter we will investigate structural and semantic distance met-
rics for linear genetic programs. A causal connection between changes of
genotypes and of phenotypes form a necessary condition for being able to
control differences between genetic programs. The two objectives of this
chapter are to show (1) how distance information between individuals can
be used to control structural diversity of individuals and (2) how variation
distance on effective code can be controlled probabilistically with different
linear genetic operators.

9.1 Introduction

Like other evolutionary search algorithms, genetic programming cannot
(completely) fulfill the principle of strong causality, i.e., small variations
in genotype space imply small variations in phenotype space [110, 116].
Obviously, changing just a small program component may lead to almost
arbitrary changes in program behavior. However, it seems to be intuitive
that the probability of a large fitness change grows with more instructions
being modified. In other words, a weak causality principle might still be
in effect.

As discussed in Section 5.4, a fitness landscape on the search space of
programs is defined by a structural distance metric between programs and
a fitness function that reflects the quality of programs. The application
of a genetic operator corresponds to performing a step from one point
to another in this landscape. In general, variation step size should be
correlated with the distance on the fitness landscape.
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The edit distance, sometimes referred to as Levenshtein distance [118, 44],
between varying length character strings has been proposed as a metric
for representations in genetic programming [59, 100]. Such a measure not
only permits an analysis of genotype diversity within a population, but it
offers the possibility to control the step size of variation operators more
precisely. In [52] a correlation between edit distance and fitness change
of tree programs has been demonstrated for different test problems. A
comparison of different diversity measures for genetic programs in terms
of their information content and their correlation with fitness may be
found in [27].

This chapter is an extension of our previous work [24]. It first introduces
efficient structural distance metrics that operate selectively on substruc-
tures of the linear program representation. Correlation between structural
and semantic distance as well as distribution of distances are examined
for different types of variation.

One objective is the explicit control of structural diversity, i.e., the average
program distance, in LGP populations. To that end, we introduce a two-
level tournament method that selects for fitness on the first level and for
diversity on the second level. We will see that this is less motivated by a
better preservation of diversity during a run but by a control of a diversity
level that depends on the configuration of the selection method. We will
also see that prediction improves significantly if the diversity level of a
population is increased.

The simplest form of diversity control might be to regularly inject random
individuals into the population during runtime. In [59] a more explicit
maintenance of diversity is proposed by creating and injecting individuals
that fill “gaps” of under-represented areas in genotype space. However,
a full experimental account is still missing for this computationally ex-
pensive approach. De Jong et al. [55] could improve parsimony pressure
through Pareto-selection of fitness and tree size by adding a third diver-
sity objective. An explicit diversity control that is based on fitness sharing
and an efficient distance metric for tree programs may be found in [34].
Burke et al. [26] maintain diversity by selecting individuals with differ-
ent genetic lineage for recombination. This happens independently from
fitness selection.

A more implicit control of genetic diversity is offered by semi-isolated
subpopulations, called demes, that are widely used in different areas of
evolutionary computation (see also Section 4.3.2). There, only a certain
percentage of individuals is allowed to migrate from one deme to another
during each generation.
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The second objective of this chapter is to examine and control the struc-
tural distance between a parent program and its offspring, i.e., the vari-
ation step size. While the effect of variation on the absolute program
structure, i.e., the absolute variation distance (see Definition 5.3), may
be controlled by the genetic operators, as demonstrated in Chapter 5,
the amount of change induced on the effective code, i.e., the effective
variation distance (see Definition 5.4), may differ significantly from the
absolute change. By monitoring effective variation distance, structural
step sizes can be controlled more precisely in relation to their effect on
program semantics. We will demonstrate that even strong restrictions of
the maximally allowed effective mutation distance do not imply a real
restriction of the freedom of variation.

Here we apply two different variants of linear GP that we already know
from Chapters 5 and 6: Variant (1) uses recombination by standard linear
crossover and variant (2) uses effective instruction mutation. In (1) the
absolute variation distance is unlimited while in (2) it is restricted to a
minimum.

9.2 Structural Program Distance

9.2.1 Effective Edit Distance

The string edit distance [118, 44] calculates the distance between two arbi-
trarily long character strings by counting the number of basic operations –
including insertion, deletion, and substitution of single characters – that
are necessary to transform one string into another. Usually each oper-
ation is assigned the same unit costs 1, independent of which character
is affected. The standard algorithm for calculating string edit distance
needs time O(n2) where n denotes the maximum number of components
compared between two individual programs. More efficient algorithms are
discussed in [87].

In general, the correlation between semantic and structural distance is
lower, the higher the proportion of noneffective code that occurs with
a certain variation operator or parameter configuration. We apply edit
distance to determine the structural distance between effective parts of
programs (effective distance).

A difference in effective code can be expected to be directly related to
a difference in program behavior (semantic distance). It is important
to recall that the effective distance is not part of the absolute distance.
Actually, two programs may have a small absolute distance while their
effective distance is comparatively large (see Section 9.5). On the other
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hand, two programs with equal effective parts might differ significantly in
their noneffective code.

void gp(r)

double r[5];

{ ...

// r[4] = r[2] * r[4];

r[4] = r[2] / r[0];

// r[0] = r[3] - 1;

// r[1] = r[2] * r[4];

// r[1] = r[0] + r[1];

// r[0] = r[3] - 5;

// r[2] = pow(r[1], r[0]);

r[2] = r[3] - r[4];

r[4] = r[2] - 1;

r[0] = r[4] * r[3];

// r[4] = pow(r[0], 2);

// r[1] = r[0] / r[3];

r[3] = r[2] + r[3];

r[4] = r[2] / 7;

// r[2] = r[2] * r[4];

r[0] = r[0] + r[4];

r[0] = r[0] - r[3];

}

Example 9.1. Linear genetic program. Noneffective instructions are commented. Reg-
ister r[0] holds the final program output.

Our selective distance metric concentrates on representative substructures
of linear programs and considers simply the sequence of operators of effec-
tive instructions. For instance, this sequence can be written for Example
9.1 as (−, +, /,+, ∗,−,−, /) where parsing started at the last effective in-
struction. Although this distance detects fewer differences, it has been
found accurate enough to differentiate between program structures, pro-
vided that the operator set (function set) used is not too small. In most
cases the modification of an effective register changes the effectiveness sta-
tus of at least one instruction and thus the effective operator sequence.1

Because the exchange of identical program components is not allowed,
changing one constant into another constant is the only type of variation
that is not registered at all by this method.

By including program registers into distance calculation the distance mea-
sure might become more ambiguous because most registers are used only

1Note that the absolute operator sequence would never be altered by the exchange of registers.



Control of Diversity and Variation Step Size 199

temporarily during calculation. As such, they may be replaced by oth-
ers without altering the behavior of the underlying program. In reality,
it is only the last assignment to an output register and all readings of
input registers before their content is overwritten that are invariable. In
addition to that, the distance between operator sequences is not unique
since the order of instructions may be changed without changing program
behavior, as indicated in Section 3.3.3. In linear GP, functional dependen-
cies between the instruction nodes usually form a rather narrow (“linear”)
graph structure. The narrower this graph structure is, the more similar
the position of a node to the position of the corresponding instruction in
the program, i.e., the smaller the effective dependence distance (see Sec-
tion 3.4). The upshot of this is that a linear program may be represented
to a sufficient degree by its operator sequence.

We are also motivated by the fact that restricting the number of com-
ponents in the comparison significantly reduces the time needed for cal-
culating the edit distance between two programs. Calculation time only
depends on the number n of effective instructions. If we would include
the noneffective instructions there are m more components to compare,
resulting in costs O((n + m)2) with m ≥ n in many scenarios. Extending
the distance calculation further to include registers and constants of in-
structions, a factor of 4 has to be taken into account (see Section 2.1.1).
Thus, computational costs would increase by a total factor of 64, if we
assume m ≈ n.

9.2.2 Alternative Distance Metrics

In all of the following experiments we will apply the edit distance metric
described above. However, even though the reduction of program elements
to be identified accelerates distance calculation, there are other, more
efficient metrics possible on linear genetic programs.

For example, one could give up the order of operators and compare only
the frequency with which an operator is applied. Program distance may
therefore be reduced to the distance between two pattern vectors v and
w of equal length n (n = size of operator set). Each vector position
vi represents the frequency of an operator type in the genetic program
corresponding to v. The Manhattan distance simply calculates the sum
of absolute differences between equal vector positions, i.e., δman(v, w) =
n∑

i=1
|vi − wi|. This requires a runtime O(n) while n will be much smaller

here, because it is not related to the length of programs. In other words,
computation costs are constant in terms of program length. Although
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the accuracy of this structural distance is definitely lower than the edit
distance, it has proven to be sufficient for an explicit control of diversity.

Another distance metric that is more efficient than the edit distance can
be applied for controlling step sizes of (effective) instruction mutation.
If an instruction at a certain program position is varied, this measure
calculates how many of the previous instructions depending on it in the
program (including the mutation point) have changed their effectiveness
status. Operationally, this is the Hamming distance between the status
flags of instructions and takes time O(n) in the worst case where n is the
maximum program length.

We will see later that the efficiency of a distance calculation is more im-
portant for controlling diversity than for controlling variation distance.

9.3 Semantic Program Distance

The most obvious metric for evaluation of the behavior of a genetic pro-
gram is the fitness function F . This usually calculates the distance of the
predicted outputs gp(�ik) returned by a program and the desired outputs
given by n fitness cases, i.e., input-output examples (�ik, ok), k = 1, .., n.
For example, in Equation 9.1 this is simply the Manhattan distance be-
tween the two output vectors:

F(gp) =
n∑

k=1

|gp(�ik) − ok| (9.1)

Correspondingly, the semantic differences between two genetic programs
may be expressed by their fitness distance:

δfit(gp1, gp2) = |F(gp1) −F(gp2)| (9.2)

In this case, the quality of solving the overall problem is considered. An-
other possibility is to compare the outputs of two programs directly. The
same distance metric as in the fitness function may be used for computing
the distance between the output vectors of programs (see Equation 9.3).
In the following this will be referred to as output distance.

δout(gp1, gp2) =
n∑

k=1

|gp1(�ik) − gp2(�ik)| (9.3)

Note that the relative output distance between two programs is inde-
pendent from their performance in terms of solving a prediction task.
Actually, two programs may have a similar fitness while their output be-
havior differs significantly, i.e., different subsets of the training data may
be approximated with different accuracy.
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For discrete problems like classifications the fitness function calculates a
classification error (see Equation 2.2). Then the output distance is defined
as follows:

δboolout(gp1, gp2) =
n∑

k=1

{1 | class(gp1(�ik)) �= class(gp2(�ik)} (9.4)

Function class in Equation 9.4 hides the classification method used to map
continuous program outputs to discrete class identifiers.

9.4 Control of Diversity

In GP the diversity Δ of a population may be defined as the average
distance of k randomly selected pairs of programs using a distance metric
δ:

Δ =
1
k

k∑
i=1

δ(gp1i, gp2i) (9.5)

The genotype diversity (or structural diversity) of programs is measured
by means of a structural distance metric. Since we apply the edit distance
between effective programs we refer to the effective diversity.

We introduce the two-level tournament selection shown in Figure 9.1 for
explicit control of diversity. On the first level, three tournaments of two
individuals each select winners by fitness. On the second level, a tour-
nament among these three winners determines the two individuals with
maximum distance. While an absolute measure, such as fitness, may be
used to compare between two individuals, selection by a relative measure,
such as distance or diversity, necessarily requires a minimum of three indi-
viduals. In general, two out of k individuals are selected with the greatest
sum of distances to the k − 1 other individuals. Selection pressure on
the first level depends on the size of fitness tournaments. Pressure of di-
versity selection on the second level is controlled by the number of these
tournaments. Additionally, a selection rate controls how often diversity
selection takes place at all and, thus, fine-tunes the selection pressure on
the second level.

The number of fitness calculations and the processing time do not increase
with the number of (first-level) tournaments if the fitness values of all
individuals are saved and only updated after variation. Only diversity
selection on the second level becomes more computationally expensive the
more individuals participate in it. Because k selected individuals require(
k
2

)
distance calculations, an efficient distance metric is important.
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Fitness Selection

Diversity Selection

      (1. Level)

        (2. Level)

Winner

Tournament

Variation

Figure 9.1. Two-level tournament selection.

The two-level tournament selection constitutes a multi-objective selection
method that finds individuals that are fitter and more diverse in relation to
others. One advantage over applying fitness selection or diversity selection
independent from each other on the same level is that the proportion of
fitness selection is not reduced. Moreover, selecting individuals only by
diversity with a certain probability does not result in more diversity among
better solutions in the population.

Selection for a linear combination of both objectives, fitness and diversity,
as is often practiced with fitness and size (parsimony pressure) has some
drawbacks: (1) It requires an appropriate weighting which is, in general,
rather difficult to find. (2) The influence of program size or distance
depends directly on its absolute value which changes over a run. With
a two-level selection this is a local rank, relative to other programs. (3)
Fitness and diversity have approximately the same priority. With our
approach, instead, fitness selection is not only decoupled from diversity
selection but always has a higher priority.

An explicit control of effective diversity increases the average distance
of individuals. The population spreads more widely over the fitness land-
scape and the probability is lower that the evolutionary process gets stuck
in a local minimum. A too high diversity, instead, has potentially negative
effects on population convergence and fitness improvement.

While increasing the effective distance between programs affects the di-
versity of a population, selection for absolute distance has also been found
to improve results, but to a lesser extent. Apart from the fact that it is
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a more time-consuming process, this finding confirms that the absolute
distance inaccurately measures the effective program distance (see Section
9.2).

Increasing the average distance between programs by diversity selection
has the side effect of accelerating the growth of (effective) program length.
In order to avoid an impact on results, we select for the effective edit
distance δeff minus the distance in effective length, i.e., δeff (gp1, gp2) −
|leff (gp1) − leff (gp2)|. This is possible because both edit distance and
length distance operate on the instruction level. A difference in length is
thus no longer rewarded directly during selection. To further reduce the
influence of code growth one might select for the relative effective distance:

δreleff =
δeff (gp1, gp2)

max(leff (gp1), leff (gp2))
(9.6)

Note here that the size of the longest pattern string (effective program)
determines the maximum effective distance possible.

Controlling phenotype or semantic diversity can be done by a selection for
a maximum semantic distance of individuals using the output distance
defined in Section 9.3. Fitness distance has been found less suitable for
this purpose. Obviously, relative output distance between programs is
able to measure semantic differences more precisely. Moreover, selection
by fitness distance may be less effective for discrete problems if the number
of fitness values is small.

9.5 Control of Variation Step Size

Already the smallest variations of a symbolic program structure may af-
fect its program behavior enormously. In linear GP these variations es-
pecially include the exchange of (effective) registers. Several instructions
that precede a varied instruction in a program may become effective or
noneffective (see also Section 3.3.1). In this way, mutations can not only
affect fitness, i.e., program semantics, but the flow of data in linear genetic
programs represented by a directed acyclic graph (see Section 3.3). Even
though larger variations of program behavior are less likely by using small
structural variation steps, this effect is undesirable.

An implicit control of structural variation distance has been employed in
Chapter 6 by imposing corresponding restrictions on different types of
mutation operators. However, genetic operators may only guarantee for
the absolute program structure that a certain maximum step size is not
exceeded. Variation steps on the effective code, instead, may still be much
larger although they might appear with a lower probability.
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A major concern of this chapter is an explicit control of the effective varia-
tion distance. The variation of a parent program is repeated until its effec-
tive distance to the offspring falls below a maximum threshold. Therefore,
the structural distance between parent and offspring is measured explicitly
by applying the effective distance metric as defined above.

In the following extract of a linear program, commented instructions are
noneffective if we assume that the output is held in register r[0] at the
end of execution. The program status on the right represents the result
of applying an effective micro mutation to instruction number 8 (from the
top). The first operand register r[3] is exchanged with register r[2]. As
a consequence, 5 preceding (formerly noneffective) instructions become
effective which corresponds to an effective mutation distance of 5.

void gp(r) void gp(r)

double r[5]; double r[5];

{ ... { ...

// r[4] = r[2] * r[4]; // r[4] = r[2] * r[4];

r[4] = r[2] / r[0]; r[4] = r[2] / r[0];

// r[0] = r[3] - 1; r[0] = r[3] - 1;

// r[1] = r[2] * r[4]; r[1] = r[2] * r[4];

// r[1] = r[0] + r[1]; r[1] = r[0] + r[1];

// r[0] = r[3] - 5; r[0] = r[3] - 5;

// r[2] = pow(r[1], r[0]); r[2] = pow(r[1], r[0]);

r[2] = r[3] - r[4]; r[2] = r[2] - r[4];

r[4] = r[2] - 1; r[4] = r[2] - 1;

r[0] = r[4] * r[3]; r[0] = r[4] * r[3];

// r[4] = pow(r[0], 2); // r[4] = pow(r[0], 2);

// r[1] = r[0] / r[3]; // r[1] = r[0] / r[3];

r[3] = r[2] + r[3]; r[3] = r[2] + r[3];

r[4] = r[2] / 7; r[4] = r[2] / 7;

// r[2] = r[2] * r[4]; // r[2] = r[2] * r[4];

r[0] = r[0] + r[4]; r[0] = r[0] + r[4];

r[0] = r[0] - r[3]; r[0] = r[0] - r[3];

} }

Example 9.2. Change of effective code (right program) after effective register mutation
(in line 8 of left program).

Since exchange of identical instruction elements – including registers, op-
erators, and constants – is avoided, operator mutations will always change
the operator sequence. But operator mutations may also induce a varia-
tion distance that is larger than 1, if the new operator requires a different
number of parameters than the former operator. As a consequence, regis-
ters have to be either added to or removed from the particular instruction.
Preceding instructions in program that depend on such a register operand
may be reactivated or deactivated, respectively.



Control of Diversity and Variation Step Size 205

Using an explicit control of the fitness distance between parent and off-
spring, instead, requires an additional fitness calculation after each vari-
ation tried, and can become computationally expensive, especially if a
larger number of fitness cases is involved. By comparison, a structural
distance like edit distance has to be recalculated only once after each vari-
ation while its computational costs do not directly depend on the number
of fitness cases. While it is not really motivated to restrict positive fitness
changes (fitness improvement) at all, it is rather difficult to find appropri-
ate maximum thresholds for the fitness distance because those are usually
problem-specific.

9.6 Experimental Setup

All techniques discussed above have been tested with three benchmark
problems, an approximation, a classification, and a Boolean problem. Ta-
ble 9.1 summarizes problem attributes and problem-specific parameter
settings of our LGP system.

Table 9.1. Problem-specific parameter settings

Problem sinepoly iris even8parity

Problem type regression classification Boolean function

Problem function sin(x) × x + 5 — even8parity

Input range [−5, 5] [0, 8) {0, 1}
Output range [0, 7) {0, 1, 2} {0, 1}
Number of inputs 1 4 8

Number of outputs 1 1 1

Number of registers 1+4 4+2 8+0

Number of examples 100 150 256

Fitness function SSE CE SE

Instruction set {+,−,×, /, xy} {+,−,×, /, if >, if ≤} {∧,∨,¬, if}
Constants {1, .., 9} {1, .., 9} {0, 1}

The first problem is referred to as sinepoly and denotes an approximation
of the sine polynomial sin(x)× x + 5 by non-trigonomic functions. Thus,
given that the maximum length of genetic programs is limited and that the
sine function is defined by an infinite Taylor-series, the optimum cannot
be found. In addition to the input register – that is identical to the output
register – there are four further calculation registers used in this problem.
Recall that this additional program memory is important in linear GP,
especially if input dimension is low. With only one register the calculation
potential would be very restricted indeed. Fitness is measured by the sum
of square errors (SSE). 100 fitness cases have been uniformly distributed
over the input range [−5, 5].
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The second problem iris is a popular classification data set that originates
from the UCI Machine Learning Repository [88]. These real-world data
contain 3 classes of 50 instances each, with the class label referring to a
type of iris plant. Fitness is calculated by the classification error (CE),
i.e., the number of wrongly classified inputs. A program output gp(�ik)
is considered correct for an input vector �ik if the distance of the output
value to the desired class identifier ok ∈ {0, 1, 2} is smaller than 0.1, i.e.,
|gp(�ik) − ok| < 0.1. Note that finding a solution would be easier if the
error threshold would be extended to the maximum (0.5 here).

The last problem tested is a parity function of dimension eight
(even8parity). The Boolean branch in the instruction set is essential for
a high number of successful runs with this problem. The sum of output
errors (SE), i.e., the number of wrong output bits, defines the fitness.

Table 9.2. General parameter settings.

Parameter Setting

Population size 2,000

Fitness tournament size 4

Maximum program length 200

Initial program length 10

Reproduction rate 100%

Micro mutation rate 25%

Macro mutation rate 75%

Instruction deletion 33%

Instruction insertion 67%

Crossover rate 75%

Problem-independent parameter configurations are given in Table 9.2.
Only one genetic operator is selected at a time to vary an individual.
Either linear crossover (cross, see Section 5.7.1) or (effective) instruction
mutation ((eff)mut, see Section 6.2.3) are used as macro operator. A dou-
bled insertion rate than deletion rate (explicit growth bias B1, see Section
5.8) guarantees a sufficient growth of programs when using smallest mu-
tation step sizes.

9.7 Experiments

9.7.1 Distance Distribution and Correlation

First of all, we demonstrate that there is a causal connection between
structural distance and semantic distance (fitness distance) of linear ge-
netic programs. We do this by applying the effective edit distance defined
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in Section 9.2. Causality forms a necessary precondition for the success
of evolutionary algorithms. Although already small variations of the pro-
gram structure may lead to almost arbitrary changes in program behav-
ior, small differences in genotype should correspond to small differences
in phenotype, at least with a higher probability (see also Section 5.4).

In the first experiment distances of 2,000 pairs of randomly selected in-
dividuals have been observed in each generation. Figures 9.2 to 9.4 vi-
sualize the resulting relation of (effective) program distance and fitness
distance together with the corresponding distributions of program dis-
tances. For all test problems there is a clear positive correlation between
program distance and fitness distance for most of the measured distances.
The phenomena are somewhat similar for the crossover-based and the
mutation-based variant of linear GP.

In a second experiment, we investigate the structural variation distance,
i.e., the distance between parent and offspring or, more precisely, the
distance of a modified individual from its original state. Figures 9.5 to
9.7 again demonstrate a positive correlation between program distance
and fitness distance, which means at least a weak causality. However,
smallest structural step sizes on the effective code still induce relatively
large semantic step sizes on average. We will demonstrate in Section 9.7.7
that even if the effective step size is set to the minimum of 1 for macro
mutations, evolutionary progress is not slowed down.

The distance distributions reveal that, in general, shorter effective dis-
tances occur with a higher frequency than longer distances. As one might
expect, the distribution of crossover distances is substantially wider than
the distribution of distances induced by instruction mutations. The dis-
tribution range of distances is significantly smaller than in the first ex-
periment because the individuals in the second experiment are related.
That the structural distance between parent and offspring is significantly
smaller, on average, than between two arbitrary individuals is an impor-
tant property of evolutionary algorithms to work efficiently.

The distance distributions of Figures 9.5 to 9.7 also show that more than
two thirds of all effective mutations induce effective distance 1. Even
though macro mutations insert or delete full effective instructions in the
majority of cases, effective distances larger than 1 occur in less than one
third of these cases. Hence it can be suspected that the effectiveness of
preceding instructions changes with a relatively low probability.

In crossover runs a high amount of operations results in effective distance
0. A high proliferation of structural introns (see Section 3.2) occurring
with the crossover operation produces this result, together with the 25
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Figure 9.2. sinepoly: Relation of program distance and fitness distance (left) and distri-
bution of program distances (right) in crossover runs (cross) and in runs using effective
mutations (effmut). Average figures over 100 runs.
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Figure 9.3. iris: Relation of program distance and fitness distance (left) and distribu-
tion of program distances (right).
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Figure 9.5. sinepoly: Relation of variation distance and relative fitness distance (left)
and distribution of variation distances (right) in crossover runs (cross) and in runs using
effective mutations (effmut). Average figures over 100 runs.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5  10  15  20  25  30

F
itn

es
s 

D
is

ta
nc

e

Variation Distance

cross
effmut

 0

 10

 20

 30

 40

 50

 60

 70

 0  5  10  15  20  25  30

F
re

qu
en

cy
 (

%
)

Variation Distance

cross
effmut

Figure 9.6. iris: Relation of variation distance and fitness distance (left) and distance
of variation distribution (right).
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Figure 9.7. even8parity: Relation of variation distance and fitness distance (left) and
distance of variation distribution (right).
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percent micro mutations used in all experiments which are not explicitly
effective.

9.7.2 Development of Effective Step Size

The 3D plot in Figure 9.8 shows how, for the iris problem, the distribution
of effective step sizes develops over the course of a run with effective
mutations (effmut). The distribution is changing such that step sizes 1
and 0 increase in frequency while larger step sizes decrease in frequency.
So after about 100 generations, changes are caused almost exclusively with
mutations that act on one instruction only, rather than by deactivation of
depending effective code. Deactivation is mostly responsible for effective
distances larger than 1. Reactivation of (structurally) noneffective code,
instead, is much less likely because the proportion of this code remains
low due to the effmut operator (see Section 6.4.1).

Figure 9.8. iris: Development of the frequency distribution of effective step sizes over
500 generations (approximately logarithmic scale) when using effective mutations (eff-
mut). Step sizes range from 0 to 9 here. Frequency of step size 1 increases clearly.
Right figure same as left figure but rotated by 90 degrees.

It appears that evolution favors effective program structures that are less
fragile against stronger variation. In other words, more robust individuals
are preferred over brittle ones. We found that the effectiveness of an in-
struction is often guaranteed by more than one (succeeding) instruction.
Figure 9.9 shows the average effectiveness degree or dependence degree
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(see Section 3.4) of a program instruction to grow continuously during
a run. On the functional level this can be interpreted to mean that the
number of connections increases between nodes of the effective graph com-
ponent. Thus, the graph-shaped structure allows the effective code to pro-
tect itself against larger disconnections (deactivations). Smaller step sizes
on the effective program structure will result in offspring with potentially
higher fitness, no matter whether this self-protection effect is an implicit
evolutionary phenomenon or simply a consequence of the increasing power
and complexity of solutions. Reducing the probability of deactivations by
multiple node connections offers linear GP a fundamental advantage over
tree programs where each node is connected to the root by only one edge
(cf. Section 8.5).

When investigating the evolution of effective step sizes, it has to be consid-
ered that this depends on the development of (effective) program length.
The larger programs become, the larger step sizes are possible, in prin-
ciple. Although programs grow over a run, the frequency of step sizes
that are larger than 1 instruction, decreases in Figure 9.8 when a distance
range of 0 to 9 is observed. Variation distances significantly larger than
10 instructions do not occur at the beginning of a run due to rather small
initial program lengths (see Section 9.6). Even if the maximum step size
increases continuously with program length in the course of a run, the
accumulated proportion of distances larger than 10 comprises only about
2 percent. Nevertheless, such events may have an influence on the average
step size.

Figure 9.9 shows a clear dependence of the average variation distance on
the number of additional (calculation) registers. While a small register
number (plus 2 in the example) results in a virtually constant average
effective step size over generations, larger numbers of registers lead to an
increase. Such behavior can be explained again by the effectiveness degree
of instructions that turns out to be lower in Figure 9.9 if more registers
are available (see also Section 7.1). Then deactivations of code become
more likely and affect larger parts of a program. Nevertheless, the average
step size remains relatively small even for large numbers of registers. We
should point out that the fundamental development of step sizes, as shown
in Figure 9.8, for 2 calculation registers is similar for larger numbers of
registers.

Larger step sizes also do not result simply from larger programs. Neither
the size of effective code nor the size of noneffective code have been found
to be significantly different for larger register numbers.
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Figure 9.9. iris: Development of the average effective mutation step size (left) and
the average degree of effectiveness (right) over the generations for different numbers of
additional calculation registers (2, 16, 64) using effective mutations (effmut). Average
figures over 50 runs.
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Figure 9.10. iris: Development of the effective mutation step size (left) and the degree
of effectiveness (right) over the effective program positions. Position 0 holds the first
instruction of a program. Average figures over 50 runs.

Figure 9.10 compares the effective step size and the effectiveness degree for
different (effective) program positions. Because a higher absolute number
of registers involves wider but not necessarily larger program graphs, the
number of connections between the instruction nodes decreases (see also
Section 7.1). At the beginning of a program step sizes are similarly small
for different register numbers. This part typically features the highest
effectiveness, especially if the number of registers is small. Towards the
end of a program the effectiveness decreases while the effective step size
increases. Larger step sizes are correlated with higher register numbers
even though the effectiveness is similarly small. As noted earlier, the
effective step size not only depends on the effectiveness of the mutated
instruction, but also on the effectiveness of the (depending) preceding
instructions in a program. Instruction nodes closer to the root, near the
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last effective instruction in a program, have less connections, especially
with many calculation registers, and are, therefore, less protected against
disconnections.

When using random instruction mutations, the amount of noneffective
instructions in programs continuously increases during a run, while this
amount remains mostly constant with effective instruction mutations (see
Figure 9.11). At the same time, the number of effective instructions is
smaller with mut than can be observed with effmut (not shown). The
higher proportion of noneffective code comes along with more noneffective
variations (effective step size 0) and, thus, a smaller average effective step
size. If noneffective variations are excluded, however, there is a clear
linear increase in average step size for mut in Figure 9.11. Apparently,
a higher number of noneffective instructions increases the likelihood for
reactivations.
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Figure 9.11. iris: Development of the average effective step size (left) and the number
of noneffective instructions (right) for effective mutations (effmut) and free mutations
(mut). Noneffective variations not regarded. Effective step size increases proportionally
to the amount of noneffective code. Average figures over 100 runs.

It has to be noted, however, that the increase in step size is still small
compared to the increase in noneffective code. Thus we may conclude that
the dependence between intron instructions increases over a run as well.
The self-protection effect may be supposed to be weaker than for effec-
tive code, but still present. Noneffective instructions may be much more
loosely connected via register dependencies since they are not directly
influenced by fitness selection. The reader may recall that this code can
form several disconnected graph components (see Section 3.3). Our exper-
iment has thus identified larger effective step sizes as a second reason for
the worse performance of free instruction mutations compared to effective
mutations, in addition to the higher rate of noneffective variations.
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Figure 9.12. iris: Development of the average effective step size (left) and the propor-
tion of noneffective length (right) over the generations for different numbers of addi-
tional calculation registers (2, 16, 64) using linear crossover (cross). Higher proportion
of noneffective code leads to smaller effective step sizes. Average figures over 50 runs.

Finally, we compare the development of effective step size for linear
crossover (cross) in Figure 9.12. In contrast to the results found with
instructions mutations, the step size decreases with a larger number of
registers, even though the average effectiveness degree remains similar to
that in Figure 9.9. This is because a higher number of registers implies a
higher proportion of noneffective code when using segment variations, as
shown in Figure 9.12 and in Section 7.1. As already noted, the proportion
of noneffective instructions in a program may act as a second implicit
protection mechanism that reduces the effective step size, besides the self-
protection effect described. A higher robustness of effective code seems to
have a smaller influence on the effective step size than a higher proportion
of noneffective code for segment variation.

9.7.3 Structural Diversity Selection

For the three test problems introduced in Section 9.6, Table 9.3 shows
average error rates obtained with and without selecting for structural
diversity. Different selection pressures have been tested. For the minimum
number of fitness tournaments (three) necessary for a diversity selection
on the second level (see Section 9.4) we discern selection probabilities of
50 percent and 100 percent. Higher selection pressures are induced by
increasing the number of tournaments (up to 4 or 8 here).

Diversity selection is examined under a crossover and a mutation ap-
proach. For each problem and both forms of variation, the performance
increases continuously with the influence of diversity selection in Table
9.3. The highest selection pressure tested results in a two-fold or higher
improvement of prediction error. This clearly shows, among other things,
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that not only population-dependent operators like crossover, but even
pure mutation-based variation may benefit from a higher code diversity.

It is notable that in all test cases, linear GP works significantly better by
using (effective) mutations instead of crossover. As already demonstrated
in previous chapters, the linear program representation is more amenable
for small mutations, especially if those are directed towards effective in-
structions.

Table 9.3. Second-level selection for structural diversity with different selection pres-
sures. Selection pressure controlled by selection probability and number of fitness tour-
naments (T). Average error over 200 runs. Statistical standard error in parenthesis.

sinepoly iris even8parity

Variation Selection SSE CE SE

% #T mean std. mean std. mean std.

cross 0 2 3.01 0.35 2.11 0.10 58 3.4

50 3 2.89 0.34 1.42 0.08 35 2.4

100 3 2.77 0.34 1.17 0.07 27 2.2

100 4 1.96 0.22 1.09 0.07 19 1.8

100 8 0.69 0.06 — —

effmut 0 2 0.45 0.04 0.84 0.06 15 1.2

50 3 0.43 0.03 0.63 0.05 12 1.0

100 3 0.30 0.02 0.60 0.05 10 1.1

100 4 0.23 0.02 0.33 0.04 7 0.8

100 8 0.17 0.01 — —

9.7.4 Development of Effective Diversity

In Section 9.4 we defined the (structural) diversity of a population as
the average effective distance between two randomly selected individuals.
Figure 9.13 illustrates, exemplary for the iris problem,2 the development
of diversity during runs for different selection pressures and variation op-
erators. The higher the selection pressure chosen, the higher the diversity.
Instead of a premature loss of diversity we observe an increase of struc-
tural diversity over the generations. While effective diversity increases
with crossover until a certain level and stays rather constant then, it in-
creases almost linearly with effective mutation. This behavior might find
its explanation in the variable-length representation in genetic program-
ming. The longer effective programs develop during a run, the larger
effective distances can become.

2even8parity and sinepoly have yielded similar results.
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Figure 9.13. iris: Structural diversity (average effective distance) with different selec-
tion pressures. Selection pressure controlled by selection probability and number of
fitness tournaments (T). Average figures over 100 runs. Macro variation by cross (left)
or effmut (right).

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50  100  150  200  250  300  350  400  450  500

R
el

at
iv

e 
E

ffe
ct

iv
e 

D
iv

er
si

ty

Generations

0% (2T)
100% (4T)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50  100  150  200  250  300  350  400  450  500

R
el

at
iv

e 
E

ffe
ct

iv
e 

D
iv

er
si

ty

Generations

0% (2T)
100% (4T)

Figure 9.14. iris: Normalized effective diversity (average relative distance) with and
without diversity selection. 100 percent macro variation.
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Figure 9.15. iris: Average effective program length with and without diversity selec-
tion. Difference in program lengths negligibly small compared to difference in diversity.
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Therefore, we compare a diversity control that applies the relative effective
distance metric (see Equation 9.6). Figure 9.14 shows the development of
this normalized effective diversity with and without an explicit diversity
control. In addition, Figure 9.15 confirms that growth of effective code
is hardly affected by diversity selection and that thus the influence of
program length on the distance calculation can be neglected. Apart from
an early drop during the first 50 generations there is no further decrease of
diversity in later generations. Both forms of variation, linear crossover and
effective mutation, maintain diversity over a run, even without an explicit
distance control. This is especially interesting because crossover is applied
exclusively for variation here, together with a 100 percent reproduction
rate. The disruptive nature of linear crossover as well as the high amount
of noneffective code in programs (see Chapters 5 and 6) may be responsible
for this phenomenon.

With effective mutation the normalized diversity may even increase again
with effective mutation, but then levels off and remains at an almost
constant level.

It is clear that mutations continuously introduce a high degree of innova-
tion into the population. The success of recombination, instead, depends
only on the composition of the genetic material in the population. The
more different two recombined solutions are, the higher the expected in-
novation of their offspring.

9.7.5 Semantic Diversity Selection

The computational overhead of a structural distance control has been
found affordable for linear genetic programs, especially if the order of in-
structions is not considered (see Section 9.2). Here we test a semantic
diversity selection for comparison. Semantic diversity is defined as the
average output distance of two individuals that have been randomly se-
lected from the population (see Section 9.3). For each problem the same
distance metric has been used like in the corresponding fitness function
(see Table 9.1).

Comparing results in Table 9.4 with results in Table 9.3 we conclude that
semantic diversity selection has a much smaller effect on the prediction
quality than selection for structural diversity. The continuous problem
sinepoly could not be solved more successfully by semantic diversity selec-
tion. For the two discrete problems one can detect a significant influence
only in runs with effective mutation.

A possible explanation is that program semantics is related to the unique
optimum of the problem, in contrast to program structure. For the pro-
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gram outputs the optimum is the set of desired outputs given in fitness
cases. Hence, the number of possibly different output patterns decreases
when fitness approaches its optimum value 0. Structural diversity, instead,
is relatively independent from fitness.

Table 9.4. Second-level selection for semantic diversity with different selection pres-
sures. Selection pressure controlled by selection probability and number of fitness tour-
naments (T). Average error over 200 runs. Statistical standard error in parenthesis.

sinepoly iris even8parity

Variation Selection SSE CE SE

% #T mean std. mean std. mean std.

cross 0 2 3.01 0.35 2.11 0.10 58 3.4

50 3 2.40 0.22 1.82 0.09 40 2.5

100 3 3.51 0.36 1.62 0.08 46 3.1

100 4 3.42 0.33 1.80 0.09 42 2.8

effmut 0 2 0.45 0.04 0.84 0.06 15 1.2

50 3 0.33 0.02 0.77 0.06 13 1.2

100 3 0.43 0.03 0.68 0.05 12 1.1

100 4 0.49 0.05 0.42 0.05 9 0.9

9.7.6 Diversity and Fitness Progress

Further interesting observations can be made when comparing the conver-
gence of best fitness and population diversity over a single run. Fitness of
the current best individual reflects the progress of the evolutionary search.
Two typical example runs in Figures 9.17 and 9.18 reveal that there is no
continuous increase in the average effective distance as one might expect
from averaging results over multiple runs (see Figure 9.13). The growth of
structural diversity is interrupted rather by sudden rapid drops (diversity
waves). Simultaneously, periods of fast fitness convergence can be ob-
served where the current best individual is replaced once or several times
in a row. Code diversity decreases quickly because a new best individual
spreads in the population within a few generations. How quickly program
diversity recovers after such an event depends on how many generations
have elapsed so far. The higher the diversity level that has been reached
before the drop, the sharper the increase. Structural diversity increases
on fitness plateaus, i.e., during periods where the best fitness stagnates.
During those times the population spreads over the fitness landscape to
explore the search space of programs more widely. Comparable results
have been found with runs using both kinds of macro variations.

A different behavior has been observed with the continuous problem
(sinepoly). Structural diversity also progresses wave-like, but with a higher
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Figure 9.16. sinepoly: Development of best fitness and structural diversity. Two typi-
cal example runs.
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Figure 9.17. iris: Development of best fitness, structural diversity, and semantic di-
versity. Structural diversity grows during phases of fitness stagnation. Two typical
example runs.
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frequency and a smaller amplitude (see Figure 9.16). Correlation with
best fitness is less clear and phases of fitness stagnation are shorter. Re-
sults in [27] confirm that correlation between diversity and best fitness is
comparatively weak for regressions.

While structural diversity decreases quickly in our discrete problems (iris
and even8parity) when the best fitness improves, a sudden increase of
semantic diversity (average fitness distance) can be observed. This phe-
nomenon can be explained by a fast propagation of the new best fitness
value in the population. During periods where best fitness stagnates,
average fitness distance decreases again.

It is important to note that the increase in structural diversity on fitness
plateaus happens implicitly, i.e., without applying an explicit control of
diversity. Diversity selection only increases the structural distance be-
tween individuals on fitness plateaus. Radical drops of diversity as a
consequence of a sudden acceleration of convergence speed, however, are
just as possible as without diversity selection. This demonstrates that in-
creasing structural diversity does not slow down convergence to the best
fitness over a run. On the contrary, much smaller prediction errors have
been observed with diversity selection in Table 9.3.

9.7.7 Control of Effective Mutation Step Size

In Section 9.5 we motivated the explicit control of the effective distance
between parent and offspring. We will restrict ourselves to instruction
mutations here. Recall that our distance metric regards instructions (op-
erators) as the smallest units. Variation is accordingly dominated by
macro mutations with an absolute step size that is set at its permanent
minimum of 1 instruction. Effective step size may become significantly
larger than 1, however, as demonstrated in Section 9.7.1.

What we want to find out in particular is, whether solution quality may
be further improved by reducing effective mutation distances probabilis-
tically. In the following experiments, a program is mutated repeatedly
until the distance between parent and offspring falls below a maximum
threshold. Each time a mutation is not accepted its effect on the program
is reversed while the choice of the mutation point is free in every itera-
tion. After a predetermined number of unsuccessful trials, the procedure
is terminated and the last variation is executed without restrictions.

Table 9.5 compares average prediction errors for different maximum mu-
tation distances. We consider the maximum program length (200 instruc-
tions) to be the maximal possible distance. For all three benchmark prob-
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lems, best results are obtained with maximum effective distance 1. Thus,
at most one instruction may change its effectiveness status, i.e., one node
of the effective graph component may be added or removed (see Section
3.3). It is interesting to note that in this case insertions or deletions of
full instructions do not create noneffective code at all.

Table 9.5. Maximum restriction of effective mutation distance. Average error over 200
runs. Statistical standard error in parenthesis.

sinepoly iris even8parity

Variation Maximum SSE CE SE

Distance mean std. mean std. mean std.

effmut — 0.46 0.06 0.90 0.06 16 1.3

20 0.41 0.05 0.83 0.06 15 1.2

10 0.35 0.04 0.72 0.06 13 1.2

2 0.28 0.03 0.68 0.05 11 1.1

1 0.26 0.03 0.54 0.05 9 0.9

This result is all the more interesting if we consider that a restriction
in variation distance always implies a restriction in variation freedom.
More specifically, certain modifications might not be executed at certain
program positions because too many other instructions would be affected.
It is important in this context to watch the number of iterations required
until a mutation gets accepted. On the one hand, the average number of
iterations reveals how strongly the variation freedom is restricted. On the
other hand, multiple recalculations of the effective distance may produce
computational costs that cannot be neglected.

Table 9.6. Average number of iterations until a maximum mutation distance is met.

Variation Maximum #Iterations

Distance sinepoly iris even8parity

effmut — 1.00 1.00 1.00

10 1.02 1.02 1.02

5 1.06 1.05 1.05

2 1.18 1.12 1.12

1 1.37 1.18 1.20

As we can learn from Table 9.6, the average number of iterations until
a maximum distance criterion is met, increases only slightly when we
lower the threshold. Not even one and a half iterations are necessary,
on average, with the lowest maximum bound (1 instruction) while the
maximum number of iterations (10 here) has hardly ever been reached.
Both aspects, together with the results from Table 9.5 emphasize that
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freedom of variation is restricted only slightly and that the computational
overhead of controlling effective mutation distances is affordable.

Results in Table 9.6 correspond to the distance distributions in Figures 9.5
to 9.7 where only about 20 to 35 percent of all measured effective step sizes
are larger than 1. By turning these larger disruptions explicitly into step
size 1 (through further trials), there is less need for an implicit step size
control during the evolutionary process, i.e., a self-protection of effective
code as reported in Section 9.7.2. In particular, no higher effectiveness
degree of instructions has to emerge just for protection purposes, but
only if it is advantageous for reaching better solutions. Thus we have
seen that even though the average effective step size has turned out to be
small already implicitly, an explicit minimization leads to an even better
performance.

9.8 Alternative Selection Criteria

A two-level tournament selection may also be used for implementing com-
plexity (growth) control, as will be applied in Section 10.8.4. The separa-
tion of linear genetic programs into effective and noneffective instructions
offers the possibility for a selective complexity selection. In other words,
one may select specifically for the smallest effective, noneffective, or ab-
solute program length. Diversity selection and complexity selection can
also be applied in combination by adding a third selection level.

Besides smaller length or larger distance there are other properties of
linear genetic programs that may be selected for. For instance, one might
want to select for a smaller or larger average number of effective registers.
Like the length of the imperative program, the width of the functional
program structure may vary with the problem to be solved. Another
possible alternative might be to select for a higher effectiveness degree of
instructions, i.e., for a higher connectivity of nodes.

Active selection for more diverse individuals may also be used to reduce
the population size without sacrificing performance. By maintaining the
same level of diversity, even a small population may cover a wide area of
the search space. Smaller population sizes mean less fitness evaluations
per generation which, in turn, results in computational speedup. This
is especially interesting for time-critical applications. In [85] population
size is reduced actively by removing individuals that are structurally very
similar to other individuals with equal fitness.
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9.9 Summary and Conclusion

In this chapter we measured and controlled the diversity of effective pro-
grams and the effective step size of different variation operators explicitly
for three different benchmark problems. We proposed different metrics
to calculate structural or semantic distance between linear genetic pro-
grams. The following major conclusions can be drawn from the various
experiments performed:

� A clear positive correlation between structural distance and fitness dis-
tance of programs was demonstrated. In particular, measuring struc-
tural differences between subcomponents of effective programs has demon-
strated (weak) causality of variation step sizes.

� An explicit control of code diversity was introduced in terms of a two-
level tournament selection that compares fitness on the first level and
diversity on the second level. Fitness selection always has higher priority
with this multi-objective selection method. By increasing structural dis-
tance between effective programs (effective diversity) in the population,
performance improved significantly. This was the case for both crossover-
based and pure mutation-based variation.

� The level of effective diversity has been found to stabilize early during a
run even if crossover is applied exclusively and even without applying an
explicit diversity control. This level is directly adjustable by the selection
pressure applied on diversity.

� Instruction mutations were introduced in Chapter 6 to cause minimal
structural variations on linear genetic programs. Only one instruction was
varied to let programs grow or shrink. In this chapter we tried to achieve
the same on the level of effective code. In particular, it turned out to be
best if not more than one effective instruction in a program changes its
effectiveness status through mutation. On the functional level only one
node of the effective graph component may be added or removed. The
average number of mutations iterated to fulfill this condition was small.

� Effective mutation step sizes were measured much smaller than ex-
pected. Effective program structures emerged that were quite robust
against larger destructions (deactivations) in the course of evolution. An
increasing degree of effectiveness of instructions is responsible for this
self-protection effect or implicit control of effective step size. In this way,
multiple connections of instruction nodes (on the functional level) offer a
fundamental advantage of linear programs over tree programs.



Chapter 10

CODE GROWTH AND
NEUTRAL VARIATIONS

This chapter brings together theories about neutral variations and code
growth in genetic programming. We argue that neutral variations are
important for the growth of code in GP runs. Other existing theories
about code growth are verified for linear GP and are partly reevaluated
from a different perspective.

In evolutionary computation neutral variations are argued to explore flat
regions of the fitness landscape while non-neutral variations exploit re-
gions with gradient information. We investigate the influence of different
variation effects on growth of code and the prediction quality for different
kinds of variation operators. It is well known that a high proportion of
neutral code (introns) in genetic programs may increase the probability
for variations to be neutral. But which type of variation creates the in-
trons in the first place? For linear GP with minimum mutation, step size
results show that neutral variations almost exclusively represent a cause
for (rather than a result of) the emergence and growth of intron code.
This part of the chapter is a continuation of our earlier studies [25].

We also examine different linear genetic operators regarding an implicit
length bias. In contrast to an explicit bias, implicit bias does not result
from the dynamics of the operator alone, but requires the existence of a
fitness pressure.

We will close this chapter with a discussion about how to control
code growth in linear GP. Different approaches are reviewed including
variation-based methods and selection-based methods. Both may be ap-
plied specifically to effective code and/or to noneffective code.
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10.1 Code Growth in GP

One characteristic of genetic programming is that variable-length individ-
uals grow in size. To a certain extent this growth is necessary to direct
the evolutionary search into regions of the search space where sufficiently
complex solutions exist with high fitness. It is not recommended, how-
ever, to initiate evolutionary algorithms with programs of very large or
even maximal size (see Section 7.6). If the initial complexity of programs
is too high the population may be not flexible enough to move towards a
region of the search space with highly fit programs.

Through the influence of variation operators – especially their variation
step size – and through other effects that will be discussed in this chapter,
genetic programs may grow too quickly. The size of those programs may
thus significantly exceed the minimum size required to solve the problem.
As a result, finding a solution may become more difficult. This negative
effect of code growth, i.e., programs becoming larger than necessary with-
out corresponding fitness improvements, became known as the bloat effect.
Code growth has been widely investigated in the GP literature [64, 2, 16,
91, 124, 70, 125, 71, 10, 128].

In general, a high complexity of GP programs causes an increase of evalu-
ation time and reduces the flexibility of genetic operations in the course of
the evolutionary process. The situation is aggravated by the fact that even
if unnecessarily large solutions are found of acceptable quality, they are
more difficult to analyze and may show worse generalization performance
[117].

Depending on the proportion of noneffective code occurring with a cer-
tain combination of variation operators, the problem of longer processing
time may be solved in linear GP by removing structural introns from
the genetic program prior to fitness calculation (see Section 3.2.1). Thus,
only effective code imposes relevant computational costs during execution.
Computational costs, however, are only one aspect of the problem.

The complexity of a linear genetic program is measured by the number of
instructions it contains. As already noted, we distinguish between absolute
program length and effective program length in linear GP. Correspondingly,
we discern code growth of all instructions from growth of (structurally)
effective code. This is referred to as absolute growth and effective growth.
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10.2 Proposed Causes of Code Growth

Several theories have been proposed to explain the phenomenon of code
bloat in genetic programming. Basically, three different causes of code
growth can be named so far that do not contradict each other, but may
coexist independently. All causes require the existence of fitness informa-
tion, i.e., may not hold true on completely flat fitness landscapes. Thus,
fitness may be regarded as a necessary precondition for code growth.

We discern two types of code that allow genetic programs to exceed the
minimal size required for solving a problem: (1) intron code – which may
be removed without changing the program behavior – and (2) semanti-
cally equivalent extensions (see Chapter 3). Only (semantically) effective
program size depends directly on the fitness. At least to a certain ex-
tent, solutions have to increase their effective complexity to improve their
fitness performance.

For the following considerations, we assume that all variation operators
are designed and configured such that they are not explicitly biased to-
wards creating longer offspring more frequently, at least not independent
of fitness selection.

10.2.1 Protection Theory

The protection theory [16, 91, 10, 128] argues that code growth and, in par-
ticular, growth of noneffective code occurs as a protection against destruc-
tive variations. The protection effect is sometimes explained by a higher
proportion of neutral variations (and a corresponding lower proportion of
destructive variations) that results from a higher rate of noneffective code
in programs.

A more general explanation for the protection effect and its influence on
code growth may be found by considering the structural step size of varia-
tions, including both neutral and non-neutral variations. The destructive
influence of a variation on the program structure strongly depends on its
step size. If the maximum amount of code, that may be exchanged or
deleted in one variation step, is large or unrestricted, evolution may re-
duce the impact on the effective code by developing a higher proportion
of introns in programs. In this way, intron code controls the (relative)
effective step size which depends on the ratio of effective and noneffective
code in a program. Programs with a higher rate of noneffective code on
average produce fitter offspring, i.e., offspring with a higher survival prob-
ability. It is argued that code grows because such offspring will be more
likely reselected for reproduction and variation [91]. At any rate, a higher
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intron proportion in programs will increase the probability for variations
to be neutral. This is even more so if the variation step size is small.
Note that the effective step size is zero for neutral variations while the
survival probability of offspring is definitely higher than after destructive
variations.

10.2.2 Drift Theory

Another theory (drift theory) [70, 71] claims that code growth results from
the structure of the search space or, more precisely, from the distribution
of semantically identical solutions in the population. The same phenotype
function may be represented by many structurally different programs.
There are many more large genotypes than there are small ones with a
certain fitness value, due to intron code and/or mathematically equivalent
expressions. Therefore, genetic operators will, with a higher probability,
create larger offspring that perform as well as their parents. Since the
population of programs represents a sample of the search space, longer
solutions will be also selected more frequently. Both effects will result in
the population evolving in a random drift towards more complex regions
of the search space.

This general drift theory may be criticized because it assumes that longer
programs emerge due to a certain structure of the search space. It has
to be noted, however, that not all programs of the search space are cre-
ated equally likely and, thus, may not be composed of an arbitrarily large
amount of introns. It will strongly depend on the variation operator ap-
plied and on the variation step size as we will see below. We have al-
ready demonstrated in Section 6.4 for effective mutation, that programs
in the population do not have to become significantly larger than neces-
sary. Hence, the part of the genotype space that is actually explored by
a certain operator – starting from small initial programs – may be much
smaller than the search space of all possible solutions.

10.2.3 Bias Theory

A third theory (bias theory) of code growth is based on the hypothesis
of the existence of a removal bias in tree-based GP [125, 71, 128]. The
change caused by removing a subtree can be expected to be the more
destructive the larger the subtree. The effect of the replacing subtree on
fitness, on the other hand, is independent of its size. As a result, the
growing offspring from which the smaller subtree is removed (and into
which the longer is inserted) will survive with a higher probability than
its shrinking counterpart.
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The size of exchanged subprograms, however, may not be the only reason
for code growth. The lower fitness of the parent individual from which
the larger subtree is extracted may simply be a result of the fact that
the root of the subtree (crossover point) lies closer to the tree root where
crossover more likely will be destructive. Vice versa, the smaller subtree
will originate more likely from a region lower in the tree.

The removal bias theory presumes that there are no side effects induced
by program functions in the problem environment. It is further important
that both parents have, on average, the same size, since destructiveness
of a removed subtree depends on the absolute program size. Finally, this
theory relies strongly on the fact that variation operators affect only a
single point in the program tree. We will see in Section 10.7 that such an
implicit growth bias cannot be clearly identified in linear GP.

10.3 Influence of Variation Step Size

The maximum step size of a variation operator determines the potential
amount of code growth that is possible in one variation step but it does not
represent a direct cause. In general, we have to distinguish between nec-
essary preconditions (indirect causes) for code growth and driving forces
(direct causes) as introduced in the last section. A larger step size re-
duces the probability of neutral variations, but increases the probability
that neutral code may emerge from non-neutral variations.

If we want to clearly identify a direct or indirect reason for code growth, it
is important to design the experiment in such a way that other causes are
disabled as much as possible. The protection effect (see Section 10.2.1)
may be at least significantly lower if the step size of variation operators
is reduced to a minimum and if program code is not exchanged between
individuals. Both may be achieved for the imperative program structure
of linear GP by mutations that insert or delete single random instructions
only,1 as described in Section 6.2. Under these conditions a protection
effect may not occur in the form of a reduction of the effective step size,
at least for all non-neutral variations that alter program length. The only
remaining protection effect could result from reducing the proportion of
destructive variations in favor of neutral variations. This is possible by
increasing the number of introns in a program.

If the mutation step size is set constant to one, neutral instructions cannot
be inserted or deleted directly along with a non-neutral variation, but only

1Code growth is not possible by exclusively applying substitutions of single instructions.
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by a neutral variation. Among other things, this allows us to analyze
destructive variations independently from their influence on the amount
of intron code. Under such conditions, introns may only emerge from
non-neutral variations by deactivation of depending instructions (apart
from the location of the mutation). This is possible for introns on both
the structural level and on the semantic level. The larger the amount of
introns the more likely deactivation will become.

Instead, as occurs with segment variation, programs may grow faster and
by a smaller number of variation steps if step sizes are larger or unre-
stricted. In particular, intron instructions may be inserted by variations,
too, that are not neutral as a whole.

The high variability of the linear representation allows structural step sizes
to be permanently minimal. The graph-based data flow and the existence
of structurally noneffective code in linear genetic programs motivate this
choice (see Chapter 3). Due to stronger constraints of the tree represen-
tation, small macro variations are difficult to achieve in regions of the tree
near to the root. Similarly, introns hardly occur in nodes close to the root,
but will be concentrated near leaves of the tree[128].

With minimal variations the drift effect will also be reduced because the
difference between parent and offspring comprises only one instruction. By
using only minimal steps the evolutionary process will drift less quickly
towards more complex regions of search space. At least a drift of intron
code will be not possible by non-neutral variations.

10.4 Neutral Variations

Most evolutionary computation approaches model the Darwinian process
of natural selection and adaptation. In the Darwinian theory of evolution,
organisms adapt to their environment through mutations of the genotype
that spread in the population if they offer a fitness advantage. Natural
selection is considered to be the dominating force for (molecular) evo-
lution. In particular, the theory claims that most changes by mutation
result in fitness changes. Most mutations are believed to be destructive
and to quickly be sorted out from the population by selection. That is, a
mutation is only believed to survive into the next generation if it improves
fitness.

Contrary to this theory, Kimura’s [61] neutral theory states that the ma-
jority of evolutionary changes on the molecular level are due to neutral or
nearly neutral mutations. The neutral theory does not deny the existence
of natural selection but assumes that only a small proportion of changes
happens adaptively, i.e., follows a fitness gradient. The larger proportion
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of mutations is believed to stay silent on the phenotype level, i.e., to have
no significant influence on survival or reproduction. Those neutral changes
spread through populations by random genetic drift which is considered
to be the main force of evolution. The orginal neutral theory has been
generalized to include near-neutral variations [95, 96]. It has found sup-
port in experimental data [62] and is nowadays used as a null-hypothesis
in experiments [31].

In linear GP we discern between two types of neutral variations. While
neutral noneffective variations change the (structurally) noneffective code,
neutral effective variations change the effective code (see Section 5.1). The
first type of change may be avoided by making all genetic operations alter
effective code. In Chapter 6 neutral instruction mutations have been
identified as a motor of evolutionary progress. Best results were obtained
by actively increasing the proportion of effective neutral mutations.

Neutral variations do not provide any gradient information to the evo-
lutionary algorithm. That is, they reduce the probability for improving
fitness by a gradient descent (exploitation). Instead, neutral variations al-
low evolution to more quickly overcome plateaus of the fitness landscape.
The fitness landscape can be explored more widely and efficiently for po-
tentially better suboptima (exploration). In doing so, neutral variations
may be expected to prevent the evolutionary search from getting stuck in
local suboptima (see also Section 5.4).

If destructive variations dominate the evolutionary process, it is hard for
an individual to improve step-by-step and to spread within the popula-
tion. More likely, it will decrease in fitness until it is replaced by a better
individual. By neutral variations, instead, an individual may be altered
without changing its ability to succeed in fitness selection. This offers
evolution the possibility to develop solutions “silently”, i.e., without ex-
posing changes to fitness selection after every variation step. This intron
code may become relevant when being reactivated later in the course of
the evolutionary process (see Section 10.7.5). If the variation step size
is large enough, intron manipulations may be carried out by non-neutral
variations, too. However, the resulting individuals will survive with less
likelihood because a larger amount of variations is destructive.

In [8] we first emphasized the relevance of neutral variations in genetic
programming. In [12] we analyzed potential benefits of neutrality and neu-
tral networks for evolutionary search in a Boolean problem space. Yu and
Miller [143] found neutral variations advantageous for solving a Boolean
problem after extra neutral code has been explicitly included into a graph
representation of programs – similar to the structural introns existing im-
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plicitly in linear GP (see Section 3.2). Lopez et al. [79] introduced unused
code into tree-based GP by allowing non-executed subtrees to be part
of the representation. This approach may be considered as an extended
concept of explicit introns (see also Section 5.7.6).

10.5 Conditional Reproduction and Variation

We use a steady state evolutionary algorithm (see Section 2.3) and apply
tournament selection with a minimum of two participants per tourna-
ment. Copies of the parent individuals are subjected to variations and
may either replace the parents in the populations (no reproduction) or
the tournament losers (reproduction). With tournament selection the re-
production rate determines the number of parent individuals surviving
a variation step, i.e., that are accepted into the steady-state population
together with the offspring. Under such a local selection scheme, it is
not recommended to significantly restrict the reproduction rate. Even if
diversity is better preserved by less individuals being overwritten, fitness
convergence may suffer because better solutions spread slower in the pop-
ulation and can be lost with a higher probability. In particular, the loss of
a new best-fit individual becomes possible if reproduction is not strictly
applied. Due to the high complexity of genetic programs and the compar-
atively low rate of constructive variation (and thus improvements) during
a GP run, information that has been lost may be hard to be regained in
the following evolutionary steps.

Under which conditions can reproduction be skipped without risking to
loose better solutions? When is reproduction absolutely necessary? Ob-
viously, after noneffective variations the effective code has not changed
and is already fully reproduced through the offspring individual. In this
case, the variation includes a reproduction and additional copies of the
parent individuals do not contribute to the preservation of information,
but only to a loss of diversity. If reproduction happens only after effective
variations, relevant information cannot get lost. This approach is referred
to as effective reproduction and constitutes another way to preserve the
effective diversity of a population, besides the explicit diversity selection
which has been introduced in Chapter 9.

Noneffective code variations, by definition, are always neutral in terms
of fitness change, but not all neutral events come about by variations of
noneffective code. Since neutral variations do not necessarily preserve the
structurally effective solution, skipping the reproduction step will make a
difference. Recall that such variations may only be neutral on the partic-
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ular fitness cases used but not necessarily in terms of all possible input
data. This may reduce the generalization performance of programs.

An omission of the reproduction step after destructive variations is not
motivated, since better individuals would be replaced by worse. Finally,
reproduction after constructive variations should be retained because they
are essential and the probability of such events is rather low.

In addition to reproduction of parent individuals, integration of offspring
into the population may be restricted. Newly created individuals might
be accepted only if they result from a certain type of variation. This
conditional acceptance of variations implies that the reproduction step is
omitted to keep the population content unchanged. Otherwise, parental
information would be doubled, i.e., old information would be erased in
the steady-state population without creating new information.

10.6 Experimental Setup

The different experiments documented in this chapter are conducted with
the four benchmark problems that have already been introduced in Sec-
tions 5.8 and 6.3. Unless otherwise stated, the same system configuration
is used here. Variants of this standard configuration will be described
along with corresponding experiments in the following section.

10.7 Experiments

10.7.1 Conditional Instruction Mutations

The experiments documented in Tables 10.1 to 10.4 investigate the in-
fluence of different variation effects on both the complexity of (effective)
programs and the prediction performance. Prediction errors are averaged
over the best-of-run solutions. Absolute and effective program lengths are
averaged over all programs created during runs. Figure 10.1 shows the
generational development of average program length in the population.
Due to the small step size of mutations used, the average length of best
individuals develops almost identically (not documented).

In the no∗ experiments offspring are not inserted into the population if
they result from a certain type of variation (destructive, neutral, nonef-
fective). In addition, reproduction of parents is skipped. In other words,
the variation is canceled without affecting the state of the population.
Note that this is different from the control of neutrality discussed in Sec-
tion 6.2.6 where variations are repeated until they are neutral. In all
experiments the number of variations (and evaluations) that defines a
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Table 10.1. mexican hat: Conditional acceptance of mutation effects and conditional
reproduction using instruction mutations (mut, B1). Average results over 100 runs.

Config. SSE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

mut 3.5 0.5 140 60 43 0.8 54 52

nodestr 3.3 0.5 139 61 44 0.2 53 52

noneutr 1.6 0.1 38 28 72 7.5 37 34

nononeff 1.5 0.1 41 30 74 4.8 41 32

effrepro 1.5 0.2 126 50 40 3.3 60 52

Table 10.2. distance: Conditional acceptance of mutation effects and conditional re-
production using instruction mutations (mut, B0). Average results over 100 runs.

Config. SSE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

mut 6.5 0.3 78 32 41 0.5 63 63

nodestr 8.0 0.3 78 32 41 0.1 64 63

noneutr 6.0 0.3 24 15 63 6.3 48 47

nononeff 6.5 0.2 25 16 62 4.7 52 48

effrepro 4.8 0.3 56 25 44 4.1 61 58

generation remains the same (1,000). This means that both accepted and
non-accepted variations are included in the calculation of prediction error,
program lengths, and variation rates.

Standard instruction mutation (mut) is characterized by a more balanced
emergence of neutral/noneffective operations and non-neutral/effective
operations.

Destructive variations hardly contribute to evolutionary progress. For
all test problems, prediction error changes only slightly compared to the
standard approach if offspring from destructive variations are not accepted
(nodestr), even though about 50 percent of all variations are rejected and
the rate of constructive variations is much smaller, in particular for classi-
fication problems (see Tables 10.3 and 10.4). Obviously, the probability of
selecting an individual that performs worse than its parent is so low that
it hardly makes any difference if this individual is copied into the popu-
lation or not. Due to a low survival rate of these offspring and due to the
minimum mutation step size, destructive mutations do not influence code
growth either.

The influence of neutral and constructive variations on code growth is
in clear contrast to the influence of destructive variations. Obviously,
survival probability of their offspring is higher. This facilitates both a
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Table 10.3. spiral: Conditional acceptance of mutation effects and conditional repro-
duction using instruction mutations (mut, B1). Average results over 100 runs.

Config. CE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

mut 13.6 0.6 128 64 50 0.3 50 42

nodestr 12.4 0.5 117 64 55 0.02 46 39

noneutr 20.0 0.6 37 31 82 5.0 32 20

nononeff 13.1 0.5 69 62 89 1.5 32 13

effrepro 9.2 0.4 117 83 71 1.1 45 25

Table 10.4. three chains: Conditional acceptance of mutation effects and conditional
reproduction using instruction mutations (mut, B1). Average results over 100 runs.

Config. CE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

mut 15.5 0.6 132 57 43 0.2 62 49

nodestr 16.4 0.7 124 53 43 0.03 62 49

noneutr 24.6 0.8 34 28 82 5.3 38 20

nononeff 12.9 0.7 80 71 88 1.0 45 13

effrepro 12.4 0.6 116 89 76 0.7 54 22

continuous further development of solutions and the growth of programs.
It is important to note that both the absolute size and the effective size
of programs are reduced the most by exclusion of neutral variation effects
from the population (noneutr).2

Noneffective neutral variations create or modify noneffective instructions,
i.e., structural introns. Accordingly, we may assume that mostly effective
neutral variations are responsible for the emergence of semantic introns
within the (structurally) effective part of program. However, effective
neutral variations and semantic introns are harder to induce and, thus,
occur with a lower frequency if the fitness function is continuous. This
is reflected in the results for the two regression problems by similar rates
of noneffective operations and neutral operations. For the discrete classi-
fication problems, instead, the proportion of neutral variations has been
found to be significantly larger than the proportion of noneffective varia-
tions which means a higher rate of effective neutral variations. Note that
branch instructions that have been used with both classification problems
further promote the emergence of semantic introns.

2This is the case even if an explicit growth bias has been used with some problems (see Section
5.8).
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In the nononeff experiments noneffective variations are rejected, i.e., only
effective variations are accepted. In contrast to noneutr, this includes ef-
fective neutral variations. Semantic introns created by these variations
may be responsible for the larger effective code that occurs with both
classification problems in nononeff runs. With the two regression prob-
lems the average effective size is reduced (approximately by half) for both
noneutr and nononeff because most neutral variations are noneffective. If
we compare results after the same number of effective evaluations the
nononeff approach corresponds to the effmut operator that calculates ef-
fective mutations algorithmically.

In both noneutr and nononeff runs the proportion of noneffective (intron)
code is much lower, especially with the classification tasks. This clearly
demonstrates that intron code in programs emerges mostly from neutral
variations. Furthermore, the proportion of neutral variations and of non-
effective variations is lower when we exclude the effects of such variations
from the population. This may be taken as an indication that intron code
increases the probability of neutral variation again.
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Figure 10.1. Development of average absolute program length using instruction mu-
tations (mut) for distance (left) and three chains (right). (Similar developments for
mexican hat and spiral.) Code growth significantly reduced without neutral variation
effects. Average figures over 100 runs.

We may conclude that neutral variations – in contrast to destructive vari-
ations – strongly dominate code growth. Since mutation step sizes are
small, constructive variations may only have a minor influence on code
growth due to their low frequency. This is the case even though the
proportion of constructive variations is much higher when not accepting
neutral effects into the population (noneutr). Moreover, non-neutral vari-
ations may hardly be responsible for an unnecessary growth of code here
because the variation step size is minimum. Then intron code cannot
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be created directly by such operations and all changes of a program are
exposed to fitness selection.

Being able to induce small mutations at each position of the linear rep-
resentation carries a special significance for our results. Indirect creation
of intron instructions through deactivation seems to play a minor role
only. The increasing robustness of effective code against deactivation of
instructions renders those less frequent over the course of a run (see Sec-
tion 9.7.2).

If one looks at prediction quality the noneutr experiments show a clear im-
provement on one of the two approximation problems (mexican hat) while
a clear deterioration can be observed on both classification problems. The
nononeff experiments, in turn, show performance never dropping below
baseline results. Apparently, fitness is not negatively affected if only non-
effective neutral variations are excluded. Thus, effective neutral variations
may be more relevant than noneffective neutral variations.

We cannot automatically conclude from these results that neutral varia-
tions are more essential for solving classification problems only because
they are discrete. At least small plateaus will exist on the fitness landscape
with problems whose output range is continuous. Better performance may
also result from the fact that programs grow larger by neutral changes
and less likely go extinct by being overwritten. Recall that classification
problems benefit less from a lower complexity of solutions than the two
symbolic regressions, because the former make use of branch instructions.

10.7.2 Effective Reproduction

Reproduction after effective variations only (effrepro) is characterized by a
clear gain in performance compared to the standard approach (mut) with
about 50 percent noneffective variations (see Tables 10.1 to 10.4). Since
the reproduction step is rather pointless if the effective code has not been
altered (see Section 10.5), diversity of solutions may be better maintained
without it. This is confirmed by a higher average fitness and standard
deviation in the population (not documented). In contrast to nononeff,
newly created individuals are always accepted and find their way into the
population. Interestingly, the average prediction error is smaller than or
equal to the error obtained in nononeff runs. This may be related to the
(effective) program size that is less reduced by a lower reproduction rate
of parents than by a lower acceptance rate of their offspring.
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10.7.3 Conditional Segment Variations

This section documents the influence of different variation effects on code
growth when using unrestricted segment operators in linear GP – includ-
ing two-segment recombination (cross) and one-segment mutation (one-
segmut). In Tables 10.5 to 10.8 either destructive variations (nodestr),
neutral variations (noneutr) or both (noneutr+nodestr) have been prohib-
ited. Again, both reproduction of parents and integration of offspring into
the population are skipped, should the variation be of the corresponding
type.

Table 10.5. mexican hat: Conditional acceptance of variation effects using crossover
(cross). Average results over 100 runs after 1,000 generations.

Config. SSE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

cross 15.4 1.5 180 67 37 4.9 26 22

nodestr 12.4 1.4 177 68 38 0.5 23 22

noneutr 9.9 1.2 170 70 42 10.9 21 18

noneutr+nodestr 3.3 0.4 122 53 43 2.8 19 17

Table 10.6. mexican hat: Conditional acceptance of variation effects using one-segment
mutation (onesegmut). Average results over 100 runs after 1,000 generations.

Config. SSE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

onesegmut 4.2 0.5 92 38 42 4.6 26 21

nodestr 5.3 0.6 99 43 43 0.2 20 19

noneutr 2.9 0.2 96 43 44 10.4 23 18

noneutr+nodestr 3.2 0.2 75 36 48 2.0 20 19

The step size of segment variations is restricted only by the program
length. In contrast to instruction mutations, non-neutral (segment) vari-
ations may contribute to intron growth by inserting noneffective instruc-
tions along with effective ones. In general, the more instructions that can
be inserted in one variation step, the less variations that are necessary
to let programs bloat, provided that there is at least one cause of code
growth valid for the applied genetic operator(s).

As already reported in Section 5.9.2, smaller solution sizes occur by using
(one-)segment mutation instead of recombination in Tables 10.6 and 10.8.
It will be argued in Section 10.8.2 that these results follow from the fact
that randomly created segments restrict the formation and propagation
of introns in the population.
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Table 10.7. spiral: Conditional acceptance of variation effects using crossover (cross).
Average results over 100 runs after 1,000 generations.

Config. CE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

cross 26.1 0.7 185 102 55 3.6 23 14

nodestr 25.0 0.7 184 103 56 0.1 21 15

noneutr 27.6 0.6 174 106 61 8.7 25 12

noneutr+nodestr 26.1 0.5 101 57 56 1.1 23 13

Table 10.8. spiral: Conditional acceptance of variation effects using one-segment mu-
tation (onesegmut). Average results over 100 runs after 1,000 generations.

Config. CE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

onesegmut 21.2 0.6 126 65 51 2.4 27 19

nodestr 18.0 0.7 125 66 53 0.04 23 18

noneutr 27.8 0.6 63 36 56 7.2 29 17

noneutr+nodestr 31.4 0.5 37 21 59 0.7 25 19

Similar to the results found with instruction mutations in Section 10.7.1
code growth is hardly affected once destructive variations are not accepted
(nodestr). In general, it seems to be very unlikely for a program solution
to grow in a sequence of destructive operations without being overwritten.

As opposed to Section 10.7.1 programs grow here even if neutral offspring
are not accepted into the population (noneutr). But still a significantly
lower complexity has been found for the spiral classification when using
one-segment mutations. While the fitness performance decreases for this
problem, it improves clearly for mexican hat. In both problems the rate
of constructive variation is more than doubled, compared to the standard
approach. Mostly the constructive operations are responsible for growth
of noneffective and effective code here. The difference in fitness between
runs with and without neutral variations cannot stem from a difference in
solution size, at least for mexican hat, as it may be the case for instruction
mutations in Section 10.7.1.

If both neutral and destructive changes are prohibited (noneutr+nodestr)
evolutionary progress and code growth are impacted only by constructive
variations. Because the rate of constructive variations is even lower than
in the comparative experiment, only a few new individuals are accepted
into the population. Nevertheless, this is high enough to let programs
grow. The maximum size limitation allows average program length to be
more similar, at least in crossover experiments (see Tables 10.5 and 10.7).
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Figure 10.2 reveals, however, more significant differences if the maximum
limit is chosen so high (1,000 instructions) as to not affect the develop-
ment of program length until a substantial number of generations (200
for mexican hat and 125 for spiral). Prohibiting neutral variation effects
reduces code growth more than prohibiting destructive effects, although
the latter events occur about three times as frequent. Indeed, destructive
variation does not seem to have any influence on program growth for the
mexican hat problem. Code growth is most restricted if neither destruc-
tive nor neutral crossover is accepted. The comparatively low number of
constructive events alone is not sufficient to bloat programs even though
segment length is not restricted.
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Figure 10.2. Development of average absolute program length when using crossover
(cross) almost without restriction by the maximum program length (1,000 instructions).
Code growth is reduced more without neutral variation effects than without destructive
effects. Bars show standard deviation of program length in the population. Average
figures over 30 runs for mexican hat (left) and spiral (right).

10.7.4 Semantic Diversity

We have seen above that the average fitness of best solutions changes only
a little if destructive variations are not accepted. This is quite different for
the average fitness in the population as a comparison between Figures 10.3
and 10.4 reveals. Normally, average fitness develops differently from best
fitness and with a higher standard deviation if all offspring are included.3

Typically, the difference between average fitness and best fitness is smaller
for the discrete problem with its more narrow range of fitness values.

3Standard deviation applies to fitness values in the population, not to average fitness over
multiple runs.
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Figure 10.3. Development of average fitness and standard deviation in the population
for mexican hat (left) and the spiral (right) using crossover (cross). Standard deviation
is printed 5 times smaller for mexican hat. Average figures over 100 runs.

 0

 10

 20

 30

 40

 50

 60

 100  200  300  400  500  600  700  800  900  1000

Generation

Best Fitness
Average Fitness

 0

 20

 40

 60

 80

 100

 100  200  300  400  500  600  700  800  900  1000

Generation

Best Fitness
Average Fitness

Figure 10.4. Development of average fitness and best fitness for mexican hat (left) and
spiral (right). Very similar if destructive variations are canceled (nodestr). Standard
deviation is below 1 (not printed). Average figures over 100 runs.

For both problems average fitness and best fitness are almost equal in
Figure 10.4 if worse offspring are prohibited from entering the population
(nodestr). Then most individuals share the same fitness value. A low
standard deviation of fitness values is an indication for a low semantic
diversity of programs in the population. Diversity of the effective code
(structural diversity) may also be smaller, because only a few non-neutral
(constructive) variations change effective code and most neutral variations
only alter noneffective code. In contrast to a higher structural diversity
(see Chapter 9), a higher semantic diversity seems to be less important.

The development of average fitness in noneutr runs does not behave dif-
ferently from the development in normal runs (not shown).
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10.7.5 Neutral Drift
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Figure 10.5. spiral: Development of best fitness and the rate of neutral variation
over two typical example runs using instruction mutations (mut, B0). Rate of neutral
variations increases almost only on fitness plateaus (during stagnation periods of the
best fitness).
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Figure 10.6. spiral: Development of best fitness, average effective length, and average
noneffective length over the same runs as in Figure 10.5. Neutral noneffective code
grows continuously on fitness plateaus and shrinks on fitness gradients. Effective code
grows stepwise. Length figures have been slightly shifted vertically for a better view.

Figures 10.5 and 10.6 show two characteristic example runs for the spi-
ral problem using instruction mutations (mut). The development of the
best fitness reflects approximately the progress in the population. Longer
stagnation phases of the best fitness, as they occur especially with discrete
problems, are correlated with periods of many neutral variations. Actu-
ally, the rate of neutral variations increases4 continuously during such ex-
ploration phases, which promotes an increase of noneffective neutral code
in the population individuals. One can see that both neutral code and

4The rate of neutral variation decreases over the whole run mostly by the influence of the
maximum program length.
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neutral variations show a slightly delayed (for a few generations) reaction
to a new (best) fitness situation.

If a better (effective) solution occurs it spreads rapidly within a few gen-
erations. That is, the population follows (exploits) a newly detected posi-
tive fitness gradient. Interestingly, the amount of noneffective code drops
again, together with the number of neutral variations during such a period.
Almost simultaneously, the effective length increases which is reflected by
a stepwise progression in Figure 10.6.

Such observations may be explained by code reactivations. After a period
of neutral (and destructive) variations the “silently” developed neutral
code is suddenly reactivated in a constructive way. During such neutral
walks over plateaus of the fitness landscape the individual structure may
be developed continuously by neutral changes.

The fact that reactivation of intron segments improves the (best) fitness,
shows that introns do not only contribute to unnecessary code growth
but are actually relevant for evolutionary progress and (indirectly) for the
growth of effective code, too, and so are neutral variations. In particu-
lar, this demonstrates that the structurally noneffective code (created by
noneffective neutral variations) is used for finding solutions, at least when
applying random instruction mutations. Similar correlations as in Figures
10.5 and 10.6 may be expected for the development of effective neutral
variations and semantic introns.

The above analysis of single runs has shown how neutral variations, code
growth and fitness progress are interrelated. But what is the driving
force that lets both neutral variations and neutral code increase during
stagnation phases of the best fitness? Two possible theories may be put
forward:

(1) Neutral variations fully preserve the semantics of a solution and, there-
fore, guarantee a high survival rate of offspring. Since the survival rate has
been found to be very low after destructive variations and since the rate
of constructive variations is generally low (see Section 10.7.1), individuals
will mostly be selected that have resulted from a neutral variation.

Another important reason why neutral variations have a high impact on
the growth of intron code is that the size of this code does not influence the
program fitness directly. Especially structurally noneffective code emerges
relatively easy in linear GP. Thus, introns may be argued to grow by
random drift during the spreading of a population over plateaus of the
fitness landscape.
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As mentioned in Section 10.4, Kimura’s [61] neutral theory considers a
random genetic drift of neutral mutations as the main force of natural
evolution. The neutral theory of code growth may thus regard a drift of
intron code by neutral variations as the dominating force of code growth.

(2) By applying only deletions or insertions of single instructions, the
possible influence of a protection effect in terms of a reduction of effec-
tive step size by more noneffective code is restricted as much as possible
(see Section 10.3). However, protection may still occur such that a high
proportion of neutral code reinforces the probability for neutral variations.

10.7.6 Crossover Step Size

For the following considerations the reader may recall that linear genetic
programs as used in this book may be represented as an equivalent directed
acyclic graph (see Section 3.3). Depending on the number of available
program registers the graph structure of linear programs can be quite
narrow compared to its length. When exchanging segments of instructions
by linear crossover, such structures may be easily disrupted completely,
meaning that all program paths are affected simultaneously. This leads
us to believe that the influence of a segment on fitness depends only in
part on its length. Linear crossover might not have a significantly larger
destructive effect beyond a certain segment length.

In order to examine this idea we introduce the quantity of relative fitness
change which is defined as the difference in fitness between parent and
offspring (absolute fitness change), divided by the parental fitness:

Fp −Fo

Fp
(10.1)

The average fitness change is usually negative since much more variation
effects are destructive than constructive.5

Figure 10.7 confirms our assumption. In linear genetic programs the seg-
ment length (structural step size) is only proportional to the relative fit-
ness change (semantic step size) up to a certain length. One can also see
that the segment length beyond which average fitness stagnates is larger
if more registers are provided.

In order to guarantee that average segment length remains the same over
the entire run, one starts out with genetic programs of maximal size.
In doing so, crossover will exchange equally long segments between two

5Recall here that the optimal fitness value F is always zero.
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Figure 10.7. Average relative fitness change per segment length when using crossover
(cross) and a constant program length of 200 instructions. Larger segments are not more
destructive beyond a certain length depending on the number of calculation registers
(0, 4, 8, and 16). Average figures over 30 runs for mexican hat (left) and spiral (right).
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Figure 10.8. Development of the average relative fitness change when using crossover
(cross) and a constant program length of 200 instructions. Crossover becomes relatively
more destructive during a run. Average figures over 30 runs for mexican hat (left) and
spiral (right).

individuals right from the beginning. Nevertheless, crossover will become
more destructive over time. Figure 10.8 compares the development of
relative fitness changes. The more the program fitness improves over the
course of generations, the larger the relative destructive effect will be.
The effect is more pronounced with more registers for calculation. We
note in passing that very similar figures may be produced for two-segment
mutations.

10.7.7 Implicit Bias: Linear Crossover

Let a variation operator be free from an explicit bias if there is no relevant
code growth in the absence of fitness information. In other words, the
same amount of code will be added, on average, to the population than
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is removed. While the exchange of subprograms during crossover may
not increase average program size, subprogram mutation will have to be
explicitly required to leave it unchanged. This has been realized in Section
5.7.5 by selecting the length of a randomly inserted segment in relation
to the length of another randomly selected individual.

In turn, we refer to an implicit bias if program growth happens only in the
presence of fitness and does not result simply from the variation operator.
As noted in Section 10.2.3, removal bias has been argued to be a direct
cause of code growth in tree-based genetic programming with subtree
crossover. This implicit growth bias results from the fact that the deleted
subtree may cause a fitness change that depends on the subtree size in
relation to the program size. The fitness change caused by the inserted
subtree, instead, is relatively independent from its size. One reason for
this is the single connection point (edge) over which all subtrees may
influence the result of the main program.

The situation is less clear when using crossover in linear GP. Several rea-
sons may be found why the effect of an inserted instruction segment on
fitness is not independent of its length. First, the more instructions are
removed from or added to a linear program, the more content of (effective)
registers will be changed. Recall from Section 3.3.1 that register manip-
ulation corresponds to modification of edges in the graph representation
of a linear genetic program. Thus, the longer an inserted instruction se-
quence is, the more variation points may be affected on the functional
level.

Second, the available number of registers determines the maximal width
of the (effective) DAG. The wider the program graphs are, the less pro-
gram paths (variation points) will be modified. At least theoretically a
removal bias becomes more likely under these conditions. However, since
linear crossover operates on instruction level, it is rather unlikely – es-
pecially with many registers – that instruction segments form contiguous
subgraphs.

Third, not all register manipulations will be effective, since not all instruc-
tions of an inserted or deleted segment usually contribute to the effective
code. The effective length of crossover segments is approximately the same
for insertions and deletions. It directly depends on the proportion of ef-
fective instructions in a program. More precisely, the number of effective
registers at the variation point in the program context and the number of
registers manipulated by the segment code determine how many segment
instructions will be effective.
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Soule and Heckendorn [128] have given experimental evidence for the re-
moval bias theory in tree-based GP. We reproduce this experiment here
for a linear program representation and linear crossover. The correlation
between relative fitness change and relative segment length is calculated
separately for inserted and deleted segments. Relative segment length de-
notes the absolute length of an inserted (deleted) segment as a percentage
of the length of the destination (source) program.
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Figure 10.9. Average relative change in fitness per relative length of the inserted and
the deleted crossover segments (cross). Average figures over 30 runs for mexican hat
(left) and spiral (right).
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Figure 10.10. Frequency distribution of relative lengths of crossover segments (cross).
Average figures over 30 runs for mexican hat (similar for spiral).

A removal bias may only be relevant for linear crossover if the length of
the inserted segment and the deleted segment are allowed to be differ-
ent. Due to the influence of the maximum length bound, however, this
period may not last very long in the course of a run. Recall that the par-
ticular crossover implementation we use exchanges equally long segments
should an offspring exceed the maximum size limit. Therefore, we allow
a maximum program length (as well as a maximum segment length) of
1,000 instructions which guarantees that programs may grow almost un-
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restricted, at least during the 250 generations observed here (see Figure
10.2).

In Figure 10.9 a removal bias occurs only for relative segment lengths
larger than 70%. For two reasons it may be questioned that such a bias
has any relevant influence on code growth. First, programs resulting from
larger destructive events may be selected for further variation with a very
low probability and thus almost do not contribute to evolution at all
(see Section 10.7.3). Second, such a large relative segment length does
not occur very frequently as we learn from the frequency distribution in
Figure 10.10.

10.7.8 Implicit Bias: Effective Instruction
Mutation

In Section 6.4.3 we have seen how an explicit growth bias influences both
code growth and prediction performance if instruction mutations are ap-
plied. Now we will investigate whether such mutations are implicitly bi-
ased, even if instructions are deleted or inserted with the same probability.
Is deletion of a single instruction likely to be more destructive than in-
sertion? If a randomly selected instruction is deleted, it depends on the
proportion of (non-)effective instructions in a program whether the dele-
tion is effective or not. If a random instruction is inserted at a particular
program position, one can expect its destination register to be effective
depending on the proportion of registers that are effective at that posi-
tion. In a larger intron block the average number of effective registers
is rather low. Thus, if an instruction is inserted in the context of other
introns, the probability that the new instruction will be an intron can
be expected to be high. Such interactions lead to similar proportions
of semantic and structural variation effects for instruction deletions and
instruction insertions (not documented).

Let us now consider effective instruction mutation as defined in Section
6.2.3. Deletion of an effective instruction node means the removal of sev-
eral edges from the corresponding program graph – one for each operand
register and at least one for the destination register – while each removed
edge (register) may lead to the disconnection (deactivation) of other code.
During insertion of an effective instruction, by comparison, only the choice
of the destination register can be a source of deactivation. This would
happen if another instruction which uses the same destination register
becomes inactive. The operand registers, instead, add new register depen-
dencies to other instructions, i.e., edges to the effective graph component.
This may result in the reactivation of previously inactive code (see also
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Section 6.2.4). But reactivation is less likely than deactivation, because
the rate of inactive instructions is usually low with effective mutation.

Surprisingly, experimental results show that effective insertions lead to
larger semantic variation step sizes, i.e., average fitness changes, than ef-
fective deletions (see Figure 10.11). Apparently, effective deletions are
less destructive because the effective code stabilizes over a run, as demon-
strated in Chapter 9. This imbalance leads to an implicit shrink bias or
insertion bias, providing another argument for why the absolute size of
programs remains small if effective code is created.
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Figure 10.11. Development of the average relative fitness change for mexican hat (left)
and spiral (right) when using effective instruction mutations (effmut). Insertions more
destructive than deletions (implicit shrink bias). Average figures over 30 runs.

10.8 Control of Code Growth

This section shows different possibilities of how code growth may be con-
trolled implicitly or explicitly in linear genetic programming. One can
distinguish between control of code growth by variation or by selection.
The following section summarizes results from Chapters 5 and 6 concern-
ing the influence of different variation operators and variation parameters
on code growth. In this section we will also analyze why code growth
occurs to be so much more aggressive with segment recombination than
with segment mutation.

10.8.1 Variation-Based Control

The absolute variation step size has been defined in Section 5.3 as the
amount of code that is deleted and/or inserted during one variation step.
Because a deletion and an insertion are always applied in combination
during a crossover operation (cross) or a two-segment mutation (segmut),
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the speed of code growth depends on the maximum difference in size
between the deleted and the inserted segment. Obviously, there is no code
growth possible if this difference is zero. Another way to limit the length
distance between parent and offspring in linear GP is to use a smaller
maximum segment length that is independent of the program length.

A control of code growth by explicitly removing structural introns from the
population (effcross) turned out to be insufficient for linear crossover. The
protection effect leads to an increase of other (semantic) introns in this
case. Depending on the problem and the configuration of the instruction
set this replacement may, however, not allow programs to become similarly
large. In addition, processing time will be increased since semantic introns
cannot be detected and removed efficiently before fitness evaluation.

One-segment recombination (oneseg) as well as one-segment mutation
(onesegmut) either insert or delete a segment with certain independent
probabilities. Unlike two-segment variations there is no substitution of
code. This allows the speed of code growth to be controlled by an explicit
bias. For instance, a shrink bias may be induced either by allowing larger
parts of code to be deleted, or by applying code deletions more frequently
than code insertions. But only the latter variant does not increase the
average variation step size.

Figure 10.12 compares code bloat for one-segment variations6 with virtu-
ally no maximum limitation of program length. More precisely, the maxi-
mum limit of 1,000 instructions influences code growth only slightly over a
period of 250 generations. In general, no influence may be expected until
program length exceeds lmax

2 where lmax is maximum program length. Up
until this point in time, selected segments are smaller than the remaining
program memory. It is important to note that recombination leads to
much faster and larger code bloat than mutation even if segment length
and, thus, absolute step size is limited only by program length. We will
come back to this phenomenon below. Using mutation instead of recom-
bination forms one out of three methods favored here to limit the growth
of (intron) code.

The relative difference in effective code (in Figure 10.12) is smaller since
the size of this code depends more strongly on the problem fitness. Never-
theless, the difference is clear since the effective length indirectly depends
on the absolute length (see Section 7.5). This is especially the case with
only a few calculation registers. For the discrete spiral problem effective

6Similar observations have been made when comparing code growth of two-segment variations
(not shown).
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Figure 10.12. Development of average (effective) program length when using one-
segment variations (oneseg, onesegmut, effonesegmut) with a maximum program length
of 1,000 instructions. Programs significantly smaller with randomly created segments.
Bars show standard deviation of program length within the population. Average figures
over 30 runs for mexican hat (left) and spiral (right).

code grows larger also because the applied function set allows semantic
introns to be created much more easily.

The difference in program size between recombination and segment muta-
tion is smaller in Sections 5.9.1 and 5.9.2 due to a lower maximum bound
of only 200 instructions, introduced to assure a comparison of prediction
errors that is less depending on differences in program size.

A smaller absolute step size acts as another measure against code growth.
By reducing mutation step size to one instruction (mut), evolution has
no way to further reduce effective step size and destructive influence of
deletions implicitly by producing more intron code. In this way, the evo-
lutionary advantage of (structural or semantic) introns is suppressed.

It is interesting to see that the difference in average program size be-
tween unrestricted one-segment mutation (maximum step size) and one-
instruction mutation (minimum step size) is smaller than it might have
been expected (see Figure 10.13). This may be taken as another hint



252 Linear Genetic Programming

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500  600  700  800  900  1000

P
ro

gr
am

 L
en

gt
h

Generation

mut
effmut

onesegmut
effonesegmut

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500  600  700  800  900  1000

P
ro

gr
am

 L
en

gt
h

Generation

mut
effmut

onesegmut
effonesegmut

Figure 10.13. Development of average program length when using instruction muta-
tions (mut, effmut) compared to segment mutations (onesegmut, effonesegmut) without
a maximum limitation of program length. Programs significantly smaller if only ef-
fective instructions are created. Relatively small difference in program length between
using minimum or maximum segment lengths, especially with effective mutations. Bars
show standard deviation of program length within the population. Average figures over
30 runs for mexican hat (left) and spiral (right). 100 percent macro mutation without
explicit length bias (B0).

that variation step size only indirectly influences code growth (see also
Section 10.3). An influence by the maximum size (1,000 instructions) can
be excluded for all mutation operators, simply because programs remain
significantly smaller. Moreover, none of the operators are explicitly bi-
ased towards creating larger solutions, i.e., insertions and deletions are
applied for 50 percent each. Recombination with a minimum segment
length of one instruction produces program growth similar to instruction
mutation (not shown). Thus, the relative difference in program growth
between both variation types is much smaller compared to using segments
of arbitrary length.

A direct insertion or variation of noneffective instructions is avoided by
using effective mutations (effmut). Noneffective code (structural introns)
may only result from an indirect deactivation of depending instructions.
The avoidance of noneffective neutral variations, in general, leads to a
significant reduction of noneffective code. In this way, effective mutation
realizes an implicit control of code growth in linear GP [23, 11]. It also
ensures that program size will depend more on fitness than on variation
and that it will be closer to the minimum size required for solving the
problem.

Alternatively, code growth is reduced if the direct creation of structural
introns is disabled while the mutation step size remains unrestricted. This
has been used with effective segment mutation (effonesegmut). In Figure
10.13 programs are not even half as large as when segments are created
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randomly (onesegmut). Avoiding direct insertion of (structural) intron
code is a third way to reduce code growth.7

When operating with minimum step sizes and effective mutations (effmut),
an explicit growth bias can be beneficial. That is to explicitly promote
code growth by using more insertions than deletions of single instructions.
Larger than minimum step sizes, instead, lead to a decrease in fitness and
not necessarily to larger solutions. Noteworthy is that not only the pro-
portion but also the size of effective code decreases if multiple instruction
mutations (mut) are applied simultaneously at different points in the same
individual (see Section 6.4.4).

Variation-based methods for controlling code growth in tree-based GP
focus primarily on the crossver operator (see, e.g., in [72, 104, 129]).

10.8.2 Why Mutations Cause Less Bloat

An interesting question that arises when analyzing code growth in linear
GP is why so much smaller programs occur with (segment) mutation than
with recombination even if the segment length is not explicitly restricted.
Instead, the proportion of (non)effective code in programs (and segments)
remains similar over a run for both types of variations.

In the following paragraphs we summarize different hypotheses which may
explain this phenomenon and support them by experimental evidence.
In general, all causes given here represent preconditions for code growth
rather than driving forces (see Section 10.2). Nevertheless, these condi-
tions may significantly increase the influence of a driving force on the size
of solutions.

(1) One explanation for stronger code growth by recombination is that
recombination uses only material from the population. This facilitates a
stabilization of (functional) program structure over a run in contrast to
insertions of large random segments. We have seen in Section 9.7.2 that
the effectiveness degree, i.e., the dependence degree of effective instruc-
tions, increases over the course of a run. In other words, the connectivity of
nodes in the effective graph component increases. A formation of (several)
larger graph components may be expected to some degree for noneffective
instructions, too, which likely were effective at some point in evolution.
If large random segments are inserted, instead, program structure might
become more brittle because the dependence degree of instructions will

7Semantic intron formation increases the complexity of programs insufficiently here to protect
(semantically) effective code.
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generally be lower. As a result, depending program instructions are more
likely to be deactivated or reactivated. Thus, both the emergence of large
robust (intron) code and its propagation in the population is limited when
using segment mutation.

These assumptions are at least in part confirmed by the results shown in
Figure 10.14. For the spiral problem the dependence degree of effective
instructions is significantly higher with (one-segment) recombination than
with mutation.
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Figure 10.14. Development of effectiveness degree over the segment length when using
recombination (oneseg) or mutation (onesegmut). Higher effectiveness possible with
recombination. Average figures over 30 runs for mexican hat (left) and spiral (right).

On a structural level subtree mutation and recombination are more similar
in their destructive effect in tree-based GP, since the indegree of tree nodes
is always 1.

(2) The fitness of individuals in the population should be higher than
the fitness of equally sized random programs. We may assume this to
be true for arbitrarily large subprograms as well. Thus, a smaller fitness
change, i.e., a smaller semantic step size, may be caused by segments
originating from another individual than would be caused by segments
created randomly.

Figure 10.15 compares the average fitness change between recombination
and mutation. Especially for the mexican hat problem, mutated segments
turn out to be much more destructive than recombined segments of equal
size. This difference increases continuously with segment length. Since
the diversity of population code is usually lower than that of random code,
more similar segments may be exchanged by recombination than created
by mutation. Interestingly, recombined segments cause smaller semantic
step sizes than random segments even though their structural step sizes
are larger, on average, as a result of larger program sizes.
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Figure 10.15. Development of fitness change over the segment length when using re-
combination (oneseg) or mutation (onesegmut). Mutation increasingly more destructive
than recombination for larger segment lengths. Average figures over 30 runs for mexican
hat (left) and spiral (right).

(3) The final possible cause that shall be mentioned here is the duplication
of code in genetic programs. Code duplication may increase the amount of
noneffective code. This is much more likely with recombination of existing
genetic material from the population.

The existence and simple creation of structural introns facilitates these
code extensions in linear GP. Local duplications of structurally noneffec-
tive instructions at the same position in the effective program, i.e., be-
tween two effective instructions, are always noneffective. Such copies can
only modify (destination) registers that have no influence on the program
output at that particular location.

Even duplications of effective code are not necessarily effective in linear
genetic programs. Sequences of single identical instructions can be ob-
served with only the last instruction being effective. The only condition
to produce this effect is if the operand register(s) are different from the
destination register.

The emergent phenomenon of code repetitions in genetic programs has
been recently investigated with respect to the building block hypothesis
and the use of different crossover operators [75–77, 137].

10.8.3 Selection-Based Control

The simplest form of growth control in genetic programming is to choose
the maximum size limit of programs as small as necessary for representing
successful solutions (see Section 7.5). The problem is, however, that the
optimal size of a solution is not known in advance. A widespread approach
to control program growth is referred to as parsimony pressure. In con-
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trast to control of growth with variation operators a parsimony pressure
is applied through selection. Usually this technique is implemented by
integrating a size component into the fitness function: Larger programs
are penalized by calculating a weighted sum of the two objectives, fitness
and size [64].

The principle of Occam’s Razor states that a shorter solution to a prob-
lem can be expected to be better and more generic than a longer solution.
Parsimony pressure relies on the assumption that there is a positive cor-
relation between shorter programs and better solutions. Because such a
correlation may not be assumed for every problem and each configura-
tion of GP (see also Section 7.5) parsimony pressure may not always be
advantageous.

In the first place, the influence of parsimony pressure on the complex-
ity and the evaluation time of linear genetic programs is interesting only
for the effective code. Recall that all structural introns can be removed
efficiently from a linear genetic program and, thus, do not cause com-
putational costs (see Section 3.2.1) during a fitness calculation or in an
application domain.

Parsimony pressure is less important for the performance of linear GP.
First, more direct influence may be exerted on code growth through vari-
ation parameters than is possible in a tree representation of programs.
The higher variability of the linear representation is responsible for this
behavior, allowing single instructions to be deleted or inserted freely at
all program positions. Second, the presence of noneffective code already
imposes an implicit parsimony pressure on the effective code in genetic
programming. This is especially interesting when using crossover in lin-
ear GP (see also Chapter 8) where structural introns may be detected
efficiently.

In Chapter 9 and in [24] we introduced two-level tournament selection and
pointed out its advantages compared to using a weighted sum for multi-
objective optimizations. We argued that it may be used in particular
for controlling program size. Luke and Panait [82] adopted this selection
method for tree-based GP and compared it against limiting the maximum
tree depth. For other selection-based methods against code bloat the
reader may consult, e.g., [55, 56, 101].

10.8.4 Effective Complexity Selection

The separation of linear genetic programs into active and inactive code
on a structural level offers the possibility for code-specific complexity and
growth control. This is realized by using our two-level selection method
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from Section 9.4. First, a certain number of individuals (here always
three) is selected by fitness and, second, among those only the two shortest
programs are allowed to participate in variation. In order to limit code
growth we may put a specific selection pressure on individuals by choosing
the smallest effective, noneffective, or absolute program. Selection pressure
is controlled solely by a selection probability that determines how often
the complexity selection is applied.

Code-specific parsimony pressure has been proposed by Soule et al. [124]
as a mean to restrict the growth of tree programs without restricting
their effective code. Introns were identified in the form of non-executed
subtrees resulting from nested branches whose contradicting conditions
were relatively easy to identify. Recall that detection of introns in tree-
based GP is not easy in general because it strongly depends on program
functions.

Table 10.9. mexican hat: Second-level selection for effective, noneffective, and absolute
complexity using selection rates 100%, 50%, 25% and crossover (cross). Average results
over 100 runs after 1,000 generations.

Code Selection (%) SSE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

— — 15.4 1.5 180 67 37 4.9 26 22

abs. 25 11.1 1.4 153 59 39 5.3 25 22

abs. 50 9.6 1.4 78 37 47 5.6 29 24

abs. 100 30.7 2.2 8 5 62 5.0 38 24

eff. 25 12.9 1.5 183 58 32 4.5 28 26

eff. 50 12.2 1.4 184 47 26 3.5 34 31

eff. 100 14.9 1.4 181 27 15 1.7 51 50

noneff. 25 10.9 1.4 149 64 43 5.7 24 21

noneff. 50 9.4 1.3 95 54 57 6.5 24 19

noneff. 100 19.3 2.1 51 45 88 7.0 26 16

Experimental results in Tables 10.9 and 10.10 show for two test problems,
mexican hat and spiral, that noneffective complexity selection is more
successful than effective complexity selection when using unrestricted lin-
ear crossover. Mexican hat benefits slightly more from the latter variant,
probably due to a stronger correlation between shorter programs and bet-
ter solutions. This behavior is different from the spiral problem which is
not helped much by effective complexity selection. By imposing a specific
pressure on the effective size, the actual solution size is penalized more
specifically while the growth of noneffective code is almost not affected.
Thus, a smaller proportion of effective instructions is maintained in pro-
grams which reduces the effective crossover step size. The proportion
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of noneffective and neutral variations is increased only slightly, though,
because of the large absolute step size.

In both test cases a moderate penalty for noneffective complexity has a
positive influence on prediction performance, even if effective step size is
larger with a larger proportion of effective code. In Table 10.9 absolute
length is relatively more reduced than effective length with higher selec-
tion pressure. In Table 10.10, instead, the effective size increases while
the absolute size remains virtually unaffected. While in the first case
performance decreases, in the latter case the loss of structural introns is
compensated by semantic introns. A similar effect has been observed by
totally removing noneffective code during effective crossover (see Section
5.9.1).

Table 10.10. spiral: Second-level selection for effective, noneffective, and absolute com-
plexity using selection rates 100%, 50%, 25% and crossover (cross). Average results over
100 runs after 1,000 generations.

Code Selection (%) CE Length Variations (%)

mean std. abs. eff. % constr. neutral noneff.

— — 26.1 0.7 185 102 55 3.6 23 14

abs. 25 22.7 0.7 167 102 61 4.1 21 12

abs. 50 20.9 0.7 132 92 69 4.8 19 10

abs. 100 32.4 1.0 30 25 83 6.3 18 10

eff. 25 26.5 0.7 188 78 42 3.2 26 21

eff. 50 26.0 0.6 185 66 36 2.9 29 24

eff. 100 27.3 0.7 184 43 24 1.7 40 37

noneff. 25 22.3 0.7 179 134 75 4.1 20 8

noneff. 50 22.6 0.7 172 160 93 4.1 19 3

noneff. 100 23.1 0.7 182 181 99 3.5 20 1

Code-specific complexity selection also allows investigation into how much
selection pressure on absolute length benefits from a reduction of effective
code or noneffective code. If a general pressure works better than any
code-specific pressure, the specific forms might complement each other.
Unfortunately, prediction performance with an absolute complexity con-
trol has not been found to be different from the results obtained with
noneffective complexity selection, at least for moderate selection proba-
bilities of 25 and 50 percent. Only for the spiral problem is there a small
improvement. However, since an absolute complexity selection produces
smaller effective programs, it better suppresses the emergence of semantic
introns (in the structurally effective code) with crossover.

We learned in Section 5.7.6 that a more reliable and stronger reduction
of crossover step size on effective code may be obtained by using explicit
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introns. These replace most implicit noneffective code and, thus, reduce
possible side effects of reactivations. As a result, smaller effective solutions
are possible. Note that explicit introns constitute another method for
controlling the growth of effective code by means of selection.

As indicated in Section 9.4, one advantage of a two-level selection process
over penalizing program length by a weighted term in the fitness function
is that the primary selection by fitness is less compromised. Moreover,
when coding multiple objectives into the fitness value the selection pres-
sure is stronger at the end than at the beginning of a run where programs
are small. This generates further difficulties for finding an appropriate
weighting of the fitness components. Complexity selection, instead, puts
a more uniform pressure on individuals that compares their relative dif-
ferences in length only.

10.9 Summary and Conclusion

This chapter studied the phenomena of code growth and neutral variations
in linear genetic programming. Different reasons for code growth were
investigated for the linear GP approach. In particular, we analyzed the
influence of different variation effects on program size for different linear
genetic operators. Again we summarize some important conclusions:

� Neutral variations were identified as an indirect but major cause of code
growth and the emergence of introns. Almost no code growth occurred
if neutral variations were not accepted and if the structural step size of
variations was reduced to a minimum. Both conditions ensure that intron
instructions are not created directly at the variation point. In general, the
importance of neutral variations is emphasized as a driver of evolutionary
progress and code growth.

� The influence of non-neutral – especially destructive – variations on
code growth has been found surprisingly low, even if variation step sizes
are larger.

� The conditional reproduction of parent individuals after effective vari-
ations only better preserves the (effective) diversity of solutions. This
technique, named effective reproduction, achieved a clear gain in perfor-
mance with instruction mutations.

� A relevant influence of implicit length biases on the growth of linear
genetic programs has not been found in general. While the removal bias
theory could not be confirmed for linear crossover, an implicit shrink bias
was detected with effective instruction mutations.
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� Different methods for controlling code growth by variation or selection
proposed in this and other chapters of the book were discussed. The two-
level selection method from Chapter 9 was applied for a selective control
of effective or noneffective program complexity.

� Recombination has been found to increase the size of programs much
more dramatically than (segment) mutation in linear GP, especially if
program size and variation step size are kept unrestricted for both macro
operators. Several possible reasons were analyzed as explanation for this
phenomenon. We also demonstrated that code growth is affected only
slightly by the step size of mutation, in clear contrast to recombination.

The following measures have shown to reduce growth of code in linear GP,
independent of their influence on performance.

� Use of macro mutation instead of recombination

� Reduction of variation step size

� Avoidance of neutral variations

� Avoidance of direct generation of neutral code

� Implicit or explicit shrink bias in variation operators

� (Effective) complexity selection



Chapter 11

EVOLUTION OF PROGRAM TEAMS

This chapter applies linear GP to the evolution of cooperative teams
to several prediction problems. Different linear methods for combining
outputs of the team programs are compared. These include hybrid ap-
proaches where (1) a neural network is used to optimize the weights of
programs in a team for a common decision and (2) a real-numbered vector
(the representation of evolution strategies) of weights is evolved in tandem
with each team. The cooperative team approach results in an improved
training and generalization performance compared to the standard GP
method.

11.1 Introduction

Two main approaches can be distinguished concerning the combination
of individual solutions in genetic programming: Either the individuals
(genetic programs) can be evolved independently in different runs and
combined after evolution, or a certain number of individuals can be co-
evolved in parallel as a team. The focus of this chapter is on the latter
approach.

Team evolution is strongly motivated by natural evolution. Many preda-
tors, e.g., lions, have learned to hunt pray most successfully in a pack.
By doing so, they have developed cooperative behavior that offers them
a much better chance to survive than they would have as single hunters.
In GP we expect the parallel evolution of team programs to solve certain
tasks more efficiently than the usual evolution of individuals. Individual
members of a team may solve an overall task in cooperation by specializing
to a certain degree on subtasks.
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Post-evolutionary combination, instead, suffers from the drawback that a
successful combination of programs is only detected by chance. It might
require many runs to develop a sufficient number of individual solutions
and numerous trials to find a good combination. Coevolution of k pro-
grams, instead, will turn out to be more efficient in time than k indepen-
dent runs. Teams with highly cooperative and specialized members are
hard to find by chance, especially since they usually require only a certain
adaptation of their members to the training data. Most combinations
of best-of-run individuals – since too much adapted to a problem – may
reduce noise but may hardly develop cooperation.

Team solutions require multiple decisions of their members to be merged
into one collective decision. Several methods to combine the outputs of
team programs are compared in this chapter. The coevolutionary team
approach not only allows the combined error to be minimized but also an
optimal composition of programs to be found. In general, the optimal team
composition is different from simply taking individual programs that are
already quite perfect predictors for themselves. Moreover, the diversity of
the individual decisions of a team may become an object of optimization.

In this chapter we also present a combination of GP and neural networks
(NN) – the weighting of multiple team programs by a linear neural net-
work. The neural optimization of weights may result in an improved
performance compared to standard combination methods. Recall that
the name linear GP refers to the linear structure of the genetic programs.
It does not mean that the method itself is linear, i.e., may solve linearly
separable problems only, as this is the case for linear NN. On the contrary,
prediction models developed by GP are usually highly non-linear.

In another hybrid approach the representations of linear GP and evolu-
tion strategies (ES) [110, 119] are coevolved in that a vector of programs
(team) and a vector of program weights form one individual and undergo
evolution and fitness calculation simultaneously.

11.2 Team Evolution

Haynes et al. [47] introduced the idea of team evolution into the field of
genetic programming. Since then evolution of teams has been investigated
mostly in connection with cooperating agents solving multi-agent control
problems. Luke and Spector [80] tested the teamwork of homogeneous
and heterogeneous agent teams in a predator/prey domain and showed
that a heterogeneous approach is superior. In contrast to heterogeneous
teams, homogeneous teams are composed of completely identical agents
and can be evolved with the standard GP approach. Haynes and Sen
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[48] tested a similar problem with different recombination operators for
heterogeneous teams.

Soule [126] applied teams to another non-control problem – a parity prob-
lem – by using majority voting to combine the the Boolean outputs of
members. He [127] later documented specialization in teams for a linear
regression problem and found better performance with teams when using
a special voting method but not with averaging.

In this chapter the team approach is applied to three different prediction
problems, two classification tasks and one approximation task. In data
mining the generalization ability of predictive models is the most impor-
tant criterion. In contrast to control tasks only heterogeneous teams are
of interest here, because for prediction tasks there is nothing to be gained
from the combination of the outputs of completely identical programs that
would constitute homogeneous teams.

11.2.1 Team Representation

In general, teams of individuals can be implemented in different ways.
First, a certain number of individuals can be selected randomly from the
population and evaluated in combination as a team. The problem with
this approach is known as the credit assignment problem: The combined
fitness value of the team has to be shared and distributed among team
members.

Second, team members can be evolved in separate subpopulations which
provide a more specialized development. In this case, the composition
and evaluation of teams might be separated from the evolution of their
members by simply taking the best individuals from each deme in each
generation and by combining them. This procedure, however, raises an-
other problem: An optimal team is not necessarily composed of best in-
dividuals for each team position. Specialization and coordination of the
team individuals is not a matter of evolution then. These phenomena
might only emerge accidentally.

The third approach, favored here, is to use an explicit team representa-
tion that is considered one individual by the evolutionary algorithm [48].
The population is subdivided into fixed, equal-sized groups of individu-
als. Each program is assigned a fixed position index in its team (program
vector). The members of a team undergo a coevolutionary process be-
cause they are always selected, evaluated and varied simultaneously. This
eliminates the credit assignment problem and renders the composition of
teams an object of evolution.
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Figure 11.1. Population subdivided into teams and demes.

Figure 11.1 shows the partitioning of the total population used in the ex-
periments described below. First, the population is subdivided into demes
[130] which, in turn, are subdivided into teams of individual programs. Ex-
change of genetic information between demes has not been realized by mi-
gration of whole teams. Instead, teams (tournament winners) are selected
for recombination occasionally from different demes while their offspring
inherit code from both demes (interdemetic recombination). Demes are
used because they better preserve the diversity of a population. This, in
turn, reduces the probability of the evolutionary process to get stuck in a
local minimum (see also Chapter 4).

The coevolutionary approach prohibits teams of arbitrary size because the
complexity of the search space and the training time, respectively, would
grow exponentially with the number of coevolved programs. On the other
hand, the team size has to be large enough to cause an improved prediction
compared to the traditional approach, i.e., team size one. Our experimen-
tal experience with this trade-off suggests that moderate numbers of team
members are adequate (see Section 11.5).

11.2.2 Team Operators

Team representations require special genetic operators, notably for recom-
bination. Genetic operations on teams, in general, reduce to the respec-
tive operations on their members. Researchers [48] found that a moderate
number of crossover points works better than recombining either one or
every team position per operation. This is due to the trade-off between
a sufficient variation, i.e., speed of the evolutionary process, and the de-
structive effect of changing too many team members at the same time.

For recombination the participating individuals of the two parent teams
can be chosen of arbitrary or equal position. If recombination between
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team positions is forbidden completely, the members of a team evolve
independently in isolated member demes. Luke and Spector [80] showed
that team recombination restricted in this way can outperform free recom-
bination for a control problem. Isolated or semi-isolated coevolution of
team members is argued to promote specialization in behavior. A possible
alternative to random selection might be genetic operators that modify
team members depending on their respective individual fitness. Members
may be sorted by error and the probability of an individual becoming
a subject of crossover or mutation would depend on its error rank. By
doing so, worse individuals would be varied more often than better ones.
Improving the fitness of worse members might have a better chance to
improve the overall fitness of the team. However, we will see below that
there is not necessarily a positive correlation between a better member
fitness and a better team fitness. Also note that this technique does not
allow member errors to differ much in a team which might have a negative
effect on specialization, too.

11.3 Combination of Multiple Predictors

In principle, this chapter integrates two research topics, the evolution
of teams discussed above and the combination of multiple predictors, i.e.,
classifiers or regressors. In contrast to teams of agents, teams whose mem-
bers solve a prediction problem require the aggregation of the members’
outputs to produce a common decision.

In the neural network community different approaches have been inves-
tigated to deal with the combination of multiple decisions in neural net-
work ensembles [45, 103, 68]. Usually, neural networks are combined after
training and are hence already quite perfect in solving a classification or
approximation problem on their own. The ensemble members are not
trained in combination and the composition of the ensemble does not un-
dergo an optimization process. In [141] neural networks are evolved and a
subset of the final population is combined afterwards. Different combina-
tion methods – including averaging and majority voting – are compared
while a genetic algorithm is used to search for a near optimal ensemble
composition.

For genetic programming Zhang et al. [144] applied a weighted majority
algorithm in classification to combine the Boolean outputs of a selected
subpopulation of genetic programs after evolution. This approach resulted
in an improvement of generalization performance, i.e., more robustness
compared to standard GP and simple majority voting, especially in the
case of sparse and noisy training data.
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The decisions of different types of classifiers including neural networks
and genetic programs are combined by an averaging technique in [123].
The result is an improved prediction quality of thyroid normal and thy-
roid carcinoma classes that has been achieved in this medical application.
Langdon et al. [73, 74] combine the outputs of multiple NN classifiers by
genetic programming for a drug discovery application.

11.3.1 Making Multiple Decisions Differ

In principle, all members in a team of predictors are intended to solve
the same complete task. The problem is not artificially subdivided among
members and there are no subproblems explicitly assigned to specific team
positions. In many real-world applications such subdivision would not be
possible because the problem structure is completely unknown. We are
interested in teams where specialization, i.e., a partitioning of the solution,
emerges from the evolutionary process itself.

Specialization strongly depends on the heterogeneity of teams. Hetero-
geneity is achieved by evolving members that produce slightly diverging
outputs for the same input situation. Nothing will be gained from the
combination of outputs of identical predictors (homologous teams). Note
that this is in contrast to agent teams that solve a control task where each
agent program usually has side effects on the problem environment.

In genetic programming the inherent noise of the evolutionary algorithm
already provides a certain heterogeneity for team members. Additionally,
it can be advantageous to restrict recombination between different team
positions [80]. This may be particularly important if a team member does
not “see” the full problem and is facing a different subtask than the other
members.

Otherwise, interpositional recombination allows innovative code to spread
to other positions in a team. Moreover, a moderate exchange of genetic in-
formation between member demes helps to better preserve diversity of the
overall team population. We will see later that for teams of predictors an
interpositional exchange of code does not necessarily reduce specialization
potential and quality of results.

Besides restricted recombination there are more specific techniques to in-
crease heterogeneity in teams and, thus, to promote the evolution of spe-
cialization:

One possible approach is to force the individuals of a team to disagree
on decisions and to specialize in different domains of the training data.
This can be achieved by training each member position with (slightly)
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different training data sets. This technique requires the individual errors
of the members to be integrated into the fitness function (see Section
11.4.2). Note that only member outputs of equal input situations can be
used to calculate the combined error of the team.

Different training subsets for team members can be derived from the full
data set that is used to determine the training error of the team. For
instance, small non-overlapping subsets may be left out as in cross vali-
dation, a method used to improve the generalization capabilities of neural
networks over multiple runs. The subsets may be sampled either at the be-
ginning of a run or resampled after a certain number of generations. The
latter technique (stochastic sampling) introduces some additional noise
into the sampling process. This may allow smaller and more different
subsets to be used since it guarantees that every team position over time
is confronted with every training example.

Finally, different function sets can be chosen for different team positions
to promote specialization as well. If recombination between different po-
sitions is allowed the team crossover operator has to be adapted such that
only individual members built from the same function set are allowed to
recombine.

11.3.2 Combination Methods

The problem that arises with the evolution of team predictors lies in
the combination of the outputs of the individual members during fitness
evaluation of a team. All combination methods tested here compute the
resulting team output from a linear combination of its members’ outputs.
(1) A non-linear combination of already non-linear predictors (genetic
programs) will not necessarily result in a better performance. (2) A non-
linear combinator might solve too much of the prediction problem itself.
Figure 11.2 illustrates the general principle of the approach.

Moreover, only basic combination methods are documented and compared
in this chapter. Even if there are hybridizations of the methods possible,
e.g., EVOL/OPT or EVOL/MV (weighted majority voting), the concur-
rent application of two combinations is not necessarily more powerful. We
noticed that more complicated combination schemes are rather difficult to
handle for the evolutionary algorithm. These might be more reasonable
with a post-evolutionary combination of (independent) predictors. Most
of the methods – except WTA (see Section 11.3.8) – can be applied to
parallel as well as to sequentially evolved programs.

For classification problems there exist two major possibilities to combine
the outputs of multiple predictors: Either the raw output values or the
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classification decisions can be aggregated. In the latter case the team
members act as full (pre)classifiers themselves. The drawback of that
method is that the mapping of the continuous outputs to discrete class
identifiers before they are combined reduces the information content that
each individual might contribute to the common team decision. Therefore,
we decided for the former and combined raw outputs – except for majority
voting that requires class decisions implicitly.
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Figure 11.2. Linear combination of genetic programs.

Some of the combination methods are only applicable to classification
tasks and are based on one of the following two classification methods:

� Interval classification (INT). Each output class of the problem definition
corresponds to a certain interval of the full value range of the (single)
program output. In particular, for classification problems with two output
classes, the continuous program output is mapped to class output 0 or 1
– depending on a classification threshold of 0.5. More generally, the class
identifier is selected which is closest to the program output.

� Winner-takes-all classification (WTA). Here for each output class ex-
actly one program output (output register) is necessary. The output with
the highest value determines the class decision of the individual.

The following combination methods are introduced for problems with two
output classes while a generalization to more output classes is not com-
plicated. One should also note that none of the methods presented here
produce relevant extra computational costs.
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11.3.3 Averaging (AV)

There are different variants of combinations possible to compute a
weighted sum of the outputs of programs in a team. The simplest form
is to use uniform weights for all members, i.e., the simple average of k
outputs as team output. In this way the influence of each individual on
the team decision is exactly the same. The evolutionary algorithm has to
adapt the team members to the fixed weighting only.

oteam =
1
k

k∑
i=1

oindi
(11.1)

11.3.4 Weighting by Error (ERR)

A more sophisticated method is to use the fitness information of each team
member for the computation of its weight. By doing so, better individuals
get a higher influence on the team output than worse.

wi = 1/eβE(gpi) (11.2)

E(gpi) is the individual error explained in Equation 11.8. β is a positive
scaling factor to control the relation of weight sizes. The error-based
weighting gives lower weights to worse team members and higher weights
to better ones. Weights should be normalized so that they are all positive
and sum to one:

wi =

∥∥∥∥∥
wi

kP
j=1

wj

∥∥∥∥∥ (11.3)

With this approach, evolution decides over the weights of a program mem-
ber by manipulating its error value. In our experiments the individual
weights are adjusted during training with the help of fitness information.
Using data different from the training data may reduce overtraining of
teams and increases their generalization performance, but causes addi-
tional computation time.

In general, error-based weighting has not been found to be consistently
better than a simple average of outputs. The reason might be that the
quality of a single member solution must not be directly related to the
fitness of the whole team. If the combined programs had been evolved
in independent runs, deriving the member weights from this independent
fitness might be a better choice. In such a case stronger dependencies
between programs – that usually emerge during team evolution by spe-
cialization – cannot be expected.
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11.3.5 Coevolution of Weights (EVOL)

In this approach team and member weights are evolved in tandem (see
Figure 11.3). The real-valued vector of weights is selected together with
the vector of programs. During each fitness evaluation the weight vector
is varied by a certain number of mutations. Only mutations improving
fitness are allowed to change the current state of weighting, a method typ-
ical for an (1+1)-ES [119]. The mutation operator updates single weight
values by applying normally distributed random changes with a constant
standard deviation (mutation step size) of 0.02. The initial weights are
randomly selected from range [0, 1].

1w 3w2w kw

Weight Vector

. . .

Individual

Program Vector (Team)

1GP GP2 GP3 GPk. . .

Figure 11.3. Coevolution of program team and vector of weights as individual.

Alternatively, a complete (1+1)-ES run might be initiated to optimize the
weighting of each team during fitness calculation. This, of course, would
significantly increase the computational costs depending on the run length.
It also might not be advantageous since teams adapt to a given weighting
situation. With EVOL optimization of the weighting is happening in
coevolution with the members, not during each team evaluation. Thus,
the coevolutionary aspect that allows team solutions to adapt to different
weighting situations is the more important one. Even if the diversity of
the population decreases at the end of a GP run improvements are still
possible by changing the influence of single team members.

11.3.6 Majority Voting (MV)

A special form of linear combination is majority voting which operates on
class outputs. In other words, the continuous outputs of team programs
are transformed into discrete class decisions before they are combined.
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Let us assume that there are exactly two output classes. Let Oc denote
the subset of team members that predict class c ∈ 0, 1:

Oc := {i|oindi = c, i = 1, .., k} (11.4)

The class which most of the individuals predict for a given fitness case is
selected as team output:

oteam =
{

0 : |O1| < |O0|
1 : |O1| ≥ |O0| (11.5)

Clear decisions by majority voting are enforced for two output classes if
the number of members is uneven. Otherwise, the team decision needs to
be explicitly defined for an equal number of votes (class 1 here).

11.3.7 Weighted Voting (WV)

Another voting method, weighted voting, is introduced here for the winner-
takes-all classification where each team program returns exactly one out-
put value for each of m output classes. For all classes c these values are
summed to form the respective outputs of the team:

∀c ∈ {0, .., m} : oteam,c =
k∑

i=1

oindi,c (11.6)

The class with the highest output value defines the response class of the
team as illustrated in Figure 11.4.

With this combination method each team individual contributes a con-
tinuous “weight” for each class instead of a clear decision for one class.
If discrete class outputs would be used, the method would correspond
to majority voting. Here weighting comes from the member programs
themselves. When using interval classification instead of WTA classifica-
tion each program might compute its own weight in a separate (second)
output variable.

11.3.8 Winner-Takes-All (WTA)

We discern two different winner-takes-all combination methods: The first
method selects the individual with the clearest class decision to determine
the output of a team. With interval classification the member output that
is closest to one of the class numbers (0 or 1) is identified as the clearest
decision. The winner may also be seen as the individual with the highest
confidence in its decision. Specialization may emerge if different members
of the team win this contest for different fitness cases.
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Figure 11.4. Combination of genetic programs by weighted voting.

If separate outputs are used instead of output intervals (WTA classifi-
cation) the clearest decision might be defined as the largest difference
between the highest output and the second highest output of a team
member.

The second and simpler WTA combination (referred to as WTA2) just
chooses the minimum output as team output.1 This selection happens
before the continuous outputs are transformed into class decisions and is
valid for interval classification. For WTA classification the member with
the lowest sum of outputs could be chosen. This variant is also possible
for regression problems.

Of course, it is not a feasible alternative to select the member whose
output is closest to the desired output during training. In such a case a
decision on unknown (unlabeled) data would not be possible.

11.3.9 Weight Optimization (OPT)

The final approach tested uses a linear neural network2 to find an op-
timal weighting of the teams’ individuals. The learning method applied
is RPROP [111], a backpropagation variant about as fast as Quickprop
which requires less adjustment of parameters. Data are processed first by

1This is determined by definition and could be the maximum output as well.
2Hidden layers of nodes are not defined.
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the programs of a team before the neural network combines their results
(see also Figure 11.2). Only a single neuron weights the connections to
the genetic programs whose outputs represent the input layer of the lin-
ear neural network. Outputs of programs are computed once for all data
inputs before the neural learning is done. In [138] a predictor is trained
using the outputs of multiple other predictors as inputs.

We apply weighting by average (AV) and use the neural network only for
optimizing the weights of the currently best team (outside of the popula-
tion). This saves computation time and decouples the process of finding
an optimal weighting from the process of breeding team individuals. The
linear network structure assures that there is only a weighting of program
outputs by the neural network and that the actual, non-linear problem is
solved exclusively by the genetic programs.

11.4 Experimental Setup

11.4.1 Benchmark Problems

We examine the team approach using the different combination methods
with two classification problems and one regression problem. The heart
problem is composed of four data sets from the UCI Machine Learning
Repository [88] and differs from the data set described in Section 4.2 in
the coding of inputs (13 integer values here) and in a higher number of
examples (720 here).
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Figure 11.5. two chains problem.
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Two chains denotes a popular machine learning problem, similar to three
chains used in Chapter 6. Two chained “rings” representing two different
classes of data points (500 each) have to be separated. The rings “touch”
each other at two regions without intersection (see Figure 11.5).

The three functions problem tests the ability of teams to approximate
three different functions simultaneously which are a sine, a logarithm and
a half circle (see Figure 11.6). 200 data points were sampled for each
function within an input range of [0, 2π]. A function index will be passed
to the genetic programs as an additional input, in order to distinguish
among the three functions.
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Figure 11.6. three functions problem.

As done before, data samples of all problems were subdivided randomly
into three sets: training set (50%), validation set (25%) and test set (25%).
Each time a new best team occurs its error is calculated using the valida-
tion set in order to check its generalization ability during training. From
all best teams emerging over a run the one with minimum validation error
is selected and tested on the test set once after the training is complete.



Evolution of Program Teams 275

11.4.2 Team and Member Fitness

The fitness F of a team might integrate two major goals: the overall error
of the team E(team) and, optionally, the errors of program members
E(gpj) to be minimized.

F(team) = E(team) + δ · 1
m

m∑
j=1

E(gpj) (11.7)

In our experiments the combined team and member errors are calculated
for the training data. Provided that outputs of team members are saved,
member errors should be computed virtually without additional overhead.
The influence of the average member error on team fitness is controlled
by a multiplicative parameter δ.

In Equation 11.7 E denotes the error of a predictor gp that is computed as
the sum of square distances (SSE) between the predicted output(s) gp(�ik)
and the desired output(s) �ok over n examples (�ik, �ok):

E(gp) =
n∑

k=1

(gp(�ik) − �ok)2 + w · CE = SSE + w · CE (11.8)

The classification error (CE) is calculated as the number of incorrectly
classified examples in Equation 11.8. The influence of the classification
error is controlled by a weight factor w. For classification problems w has
been set to 2 in order to favor classification quality, otherwise it has been
set to 0.

11.4.3 Parameter Settings

Table 11.1 lists the parameter settings used for all experiments. Popula-
tion size is 3,000 teams while each team is composed of the same number
of individual members. The population has been chosen to be sufficiently
large to preserve diversity of the more complex team solutions. The total
number of members per team and the number of members varied during
crossover and mutation are the most important parameters when investi-
gating the evolution of teams. Team members are always varied simulta-
neously by crossover and mutation.

The number of generations is limited to 1,000, both for GP teams and
for standard GP. Note that team members are far less subject to change
– one or two per team – than stand-alone individuals. While this may
reduce the speed of progress of single team members it does not hold back
the fitness progress of the whole team.
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Table 11.1. General parameter settings.

Parameter Setting

Number of generations 1,000

Number of demes 6

Number of teams (population size) 3,000

Number of team members (team size) 4

Number of varied members 1–2

Maximum member length 128

Maximum initial length 32

Crossover rate 100%

Interdemetic crossover 3%

Mutation rate 100%

Instruction set {+,−,×, /, xy}
Constants {0,..,99}

11.5 Experiments

We document the results of applying different team approaches to the
three problems of Section 11.4.1. Prediction accuracies and code size are
compared for team configurations and a standard GP approach.

The team approach, in general, has been found to produce better results
than standard GP for all three prediction tasks. Mainly problems that
can be divided into simpler subproblems benefit from a team evolution
because in such a case team members can specialize and solve the overall
task more successfully in cooperation.

Second, team solutions can be expected to be less brittle and more general
in the presence of noisy training data. Due to their collective decision
making the effect of noise will be reduced significantly. This can be seen
already for combinations of stand-alone solutions.

If nearly optimal solutions already occur with a standard GP approach
teams cannot be expected to do much better. In this case the additional
computational overhead of more complex team solutions will outweigh
possible advantages.

11.5.1 Prediction Accuracy

Table 11.2 summarizes some basic characteristics of our different team
approaches. Outputs of team members are continuous, except for majority
voting (MV) where program outputs have to be mapped to discrete class
identifiers first. The weighted voting approach (WV) is based on a WTA
classification method. All other methods use interval classification.
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Table 11.2. Configuration of the different team approaches.

Method Combination Classification Outputs

GP — INT cont

TeamGP AV INT cont

OPT INT cont

ERR INT cont

EVOL INT cont

MV INT class

WV WTA cont

WTA INT cont

WTA2 INT cont

The following tables compare best results of standard GP with different
team approaches. Minimum training and validation error are determined
among best solutions of a run. The solution with minimum validation er-
ror is applied to unknown data at the end of a run to compute a test error.
All figures denote average results from series of 60 test runs. In order to
avoid unequal initial conditions each test series has been performed with
the same set of 60 random seeds.

The classification rates for the two chains problem in Table 11.3 show
that already the standard team approach (AV) reaches approximately an
eight-fold improvement in training performance over standard GP. Most
interesting are the results of the winner-takes-all combination that select a
single member program to decide for the team on a certain input situation.
Both team variants (WTA and WTA2) nearly always find the optimum
(0% CE) for training and validation data. With standard GP the opti-
mum solution has not been found even once during 60 trials. This is a
strong indication for a high specialization of team members, and clearly
demonstrates that highly coordinated behavior emerges from the paral-
lel evolution of programs. This cannot be achieved by a combination of
standard GP programs which have been evolved independently. Coopera-
tive team evolution is much more sophisticated than just testing random
compositions of programs. In fact, the different members in a team have
adapted to each other during the coevolutionary process.

Among the team approaches which combine outputs of several individ-
ual members, WV turned out to be about as powerful as MV or EVOL.
This is remarkable because the WV method requires twice as many out-
put values – two instead of one output per member – to be coordinated.
Furthermore, optimization of weights is done by the member programs
themselves within this variant.
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Table 11.3. two chains: Classification error (CE) in percent, averaged over 60 runs.
Standard error in parentheses.

Method Training CE (%) Member CE (%) Validation CE (%) Test CE (%)

GP 3.67 (0.25) — 5.07 (0.30) 5.69 (0.37)

AV 0.44 (0.08) 25.8 (1.96) 0.82 (0.12) 2.08 (0.14)

OPT 0.36 (0.07) 32.1 (0.71) 0.69 (0.09) 1.96 (0.15)

ERR 1.31 (0.15) 20.9 (1.49) 1.91 (0.20) 2.73 (0.18)

EVOL 0.33 (0.07) 28.0 (2.09) 0.71 (0.16) 2.00 (0.17)

MV 0.37 (0.08) 25.7 (1.51) 1.48 (0.17) 2.17 (0.19)

WV 0.39 (0.09) 27.7 (1.98) 0.76 (0.14) 1.91 (0.18)

WTA 0.02 (0.01) 59.2 (2.27) 0.00 (0.00) 0.33 (0.18)

WTA2 0.00 (0.00) 64.3 (1.53) 0.00 (0.00) 0.65 (0.29)

Table 11.4 shows the prediction results for the heart problem. This ap-
plication demonstrates not only the ability of teams in real data-mining
but also in noisy problem environments, since many data attributes are
missing or are unknown. The difference in prediction error between GP
and TeamGP is about 2 percent which is significant in the respective real
problem domain. The problem structure does not offer many possibilities
for specialization. Especially in the case of winner-takes-all approaches,
we can see that they do not generalize significantly better here than the
standard approach. The main benefit of the other combination methods
seems to be that they improve fitness and generalization from noisy data
by a collective decision making of more than one team member.

Table 11.4. heart: Classification error (CE) in percent, averaged over 60 runs. Stan-
dard error in parentheses.

Method Training CE (%) Member CE (%) Validation CE (%) Test CE (%)

GP 13.6 (0.16) — 14.5 (0.17) 19.0 (0.36)

AV 11.5 (0.15) 28.1 (2.18) 13.4 (0.18) 18.2 (0.30)

OPT 11.5 (0.17) 32.0 (2.03) 12.8 (0.18) 17.5 (0.26)

ERR 11.9 (0.12) 28.6 (1.79) 12.9 (0.13) 18.0 (0.25)

EVOL 11.4 (0.13) 32.9 (2.39) 12.7 (0.13) 18.1 (0.28)

MV 10.9 (0.13) 24.6 (1.34) 13.6 (0.16) 17.5 (0.23)

WV 11.5 (0.11) 32.4 (2.41) 12.9 (0.15) 17.9 (0.24)

WTA 11.9 (0.17) 60.5 (2.44) 14.5 (0.22) 18.5 (0.31)

WTA2 12.9 (0.16) 61.5 (2.27) 14.9 (0.26) 19.2 (0.32)

Experimental results for the three functions problem are given in Table
11.5. Note that not all team variants are applicable to a regression prob-
lem. The regression task at hand has been solved most successfully by
EVOL teams. This combination variant allows different weighting sit-
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uations to be coevolved with the program teams and results in smaller
prediction errors compared to uniform weights (AV). TeamGP in general
(except for WTA2) is found to be about four times better in training
and generalization than the standard GP approach. Note that the aver-
age member error can become extremely high compared to the respective
team error for this problem.

Table 11.5. three functions: Mean square error (MSE × 100), averaged over 60 runs.
Standard error in parentheses.

Method Training MSE Member MSE Validation MSE Test MSE

GP 16.9 (0.90) — 16.2 (0.98) 16.6 (0.99)

AV 4.7 (0.27) 738 (50) 3.9 (0.22) 4.3 (0.25)

OPT 4.4 (0.30) 913 (69) 3.7 (0.27) 3.8 (0.27)

ERR 4.6 (0.33) 6340838 (4030041) 3.9 (0.30) 4.0 (0.30)

EVOL 3.2 (0.27) 33135 (11041) 2.6 (0.22) 2.7 (0.24)

WTA2 11.0 (0.68) 154762629 (9025326) 9.8 (0.68) 10.1 (0.68)

Some general conclusions can be drawn from the three applications:

Teams of predictors have proven to give superior results for known data
as well as for unknown data. On the one hand, specialization of team
members can be considered responsible. On the other hand, improved
generalization performance of teams may result from an increased robust-
ness of team solutions against noise in the data space. This, in turn, is
mainly due to the combination of multiple predictors that absorbs larger
errors or wrong decisions made by single members.

Comparing the different team configurations among each other further
shows that different combination methods dominate for different prob-
lems. A general ranking of methods cannot be produced. It is worth
trying several variants when dealing with the evolution of multiple pre-
dictors.

Some methods that allow various weighting situations outperformed the
standard team approach using uniform weights (AV). Among those meth-
ods the parallel evolution of weights together with the team programs
(EVOL) turned out to be the most successful. Optimizing weights by
using a neural network (OPT), instead, is done independent of evolution
(see Section 11.3.9). Because the individuals in best teams are already
quite adapted to a fixed (equal) weighting, optimization may not lead to
the same significant improvements.

For all three examples the average member error was highest with winner-
takes-all combinations. This is not surprising since only one member
is selected at a time to make a final decision for the whole team while
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outputs of the other members may be arbitrary. Apparently, specialization
potential is highest with these combinations. For all applications we can
observe that the performance of team members is significantly worse than
the performance of stand-alone GP individuals.

11.5.2 Code Size

The computational costs of team evolution (as compared to individual
evolution) can be paid, at least in part, by the savings obtained from the
following two effects:

� Only the (structurally) effective code needs to be executed.

� The average effective code size of team members is significantly smaller
than the effective size of stand-alone individual solutions.

As explained in Chapter 3 the structurally noneffective code does not
need to be executed and, thus, does not cause any computational costs
no matter how complex it might become during the evolutionary process.
Here we concentrate on the second effect by comparing effective code size
for different team configurations and standard GP. Recall that there is no
selection pressure on noneffective code and structurally noneffective code
emerges easily with linear crossover. As a result, absolute solution size
typically grows almost unbound and quickly reaches the maximum size
limit (number of members × 128 instructions).

Table 11.6. two chains: Absolute and effective code size of teams with 4 members and
standard GP in instructions. Effective code of teams about twice as large as standard
individuals on average. WTA solutions are smaller than standard individuals.

Method Code Size Effective Size Introns (%)

GP 128 45 64.8

AV 347 86 75.2

OPT 332 76 77.1

ERR 320 78 75.6

EVOL 294 67 77.2

MV 451 99 78.0

WV 448 124 72.3

WTA 92 33 64.1

WTA2 98 33 66.3

For the three applications, Tables 11.6 to 11.8 show effective and absolute
code size of best solutions. All teams hold the same number of mem-
bers (4). The WV combination based on winner-takes-all classification
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produces the largest teams. It seems that multiple outputs calculated
by WV members increase their complexity. WTA teams are found to be
smallest in code size. Actually, they are not much larger than a single
standard individual in effective size and might even become smaller (see
Table 11.6). This can be seen as another indication for the high spe-
cialization potential of the members in these teams. Among the other
variants teams with non-uniform weights, like EVOL, are often smaller
than standard teams (AV).

Table 11.7. heart: Absolute and effective code size of teams with 4 members and
standard GP in instructions. Effective code of teams not even 50 percent larger than
standard individuals on average.

Method Code Size Effective Size Introns (%)

GP 128 38 70.3

AV 488 56 88.5

OPT 485 48 90.1

ERR 479 46 90.3

EVOL 481 44 90.9

MV 497 56 88.7

WV 504 68 86.5

WTA 479 57 88.1

WTA2 405 48 88.1

The proportion of noneffective code is comparably high for all team ap-
proaches. The intron proportion for standard GP is lower mostly because
of the restriction of maximum size.

One reason for reduced growth of (effective) team members can be seen
in the lower variation probability compared to standard GP individuals.
We will see in the following section that it is not recommended to vary
too many members simultaneously during a team operation. Best team
prediction is obtained by varying only one member. Then the probability
for crossover at a certain team position is reduced by a factor equal to
the number of members. One might expect that member programs will
grow faster the more members are varied. That this is not true, however,
will be demonstrated in Section 11.5.4. Members with best prediction
accuracy and largest effective length occur with the lowest variation rate.

As a result, there must be a reason other than variation speed for the
relatively small effective size of teams. We have already seen in the last
section that teams perform better than standard individuals after a suf-
ficient number of generations. In order to make team solutions more ef-
ficient there must be cooperation going on between team members which
allows them to specialize in certain subtasks. Because these subtasks can
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Table 11.8. three function: Absolute and effective code size of teams with 4 members
and standard GP in instructions.

Method Code Size Effective Size Introns (%)

GP 128 58 54.7

AV 435 131 69.9

OPT 432 125 71.1

ERR 465 136 70.8

EVOL 456 123 73.0

WTA2 354 76 78.5

be expected to be less difficult than the main problem, subsolutions may
be less complex than a full one-program solution. Therefore, a positive
correlation between smaller (effective) member size and higher degree of
specialization may be assumed.

11.5.3 Number of Team Members

We restrict the following analysis to the standard team approach (AV).
Results are, however, representative for most other combination variants.

To find out the optimum number of team members, it is important that
each team member is varied with a probability of 50 percent. Otherwise,
if only one member would be changed at a time, the variation speed of
members would be directly reduced with their number.

Table 11.9 compares the classification errors for the two chains problem
and different numbers of team members ranging from one (standard GP)
to eight. Using teams with many more individuals would be computation-
ally unacceptable even if only effective instructions are executed. Both
prediction performance and generalization performance increase with the
number of members. But starting from a team size of about 4 members
significant improvements no longer occur.

The connection between the number of members and the average code
size of a member (in number of instructions) is shown in Table 11.10.
Maximum code size for each member is 128 instructions. Absolute size
and effective size per member decrease up to team size 4. Beyond 4
members, both sizes stay almost the same. This directly corresponds to
the development in prediction quality from Table 11.9.3

3The amount of genetic material of the whole team increases with the number of members.
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Table 11.9. two chains: Classification error (CE) in percent for different number of
team members, averaged over 60 runs. Standard error in parentheses. Half of the team
members are varied.

#Members Training CE (%) Member CE (%) Validation CE (%) Test CE (%)

1 3.33 (0.31) 3.3 (0.31) 4.70 (0.35) 5.59 (0.39)

2 1.33 (0.21) 16.5 (1.23) 2.34 (0.33) 3.31 (0.31)

3 0.89 (0.17) 23.1 (1.89) 1.59 (0.27) 2.64 (0.28)

4 0.37 (0.06) 27.4 (1.91) 0.69 (0.12) 1.84 (0.20)

5 0.36 (0.08) 32.8 (1.53) 0.47 (0.12) 1.90 (0.17)

6 0.38 (0.08) 32.6 (2.01) 0.58 (0.11) 1.76 (0.16)

7 0.30 (0.06) 30.2 (2.35) 0.48 (0.10) 1.78 (0.16)

8 0.39 (0.09) 34.1 (2.32) 0.48 (0.09) 1.76 (0.11)

Table 11.10. two chains: Average member size in instructions for different numbers of
team members. Half of the team members are varied.

#Members Member Size Effective Size Introns (%)

1 128 46 64.0

2 126 36 71.4

3 98 25 74.5

4 94 20 78.7

5 82 19 76.8

6 85 21 75.3

7 75 18 76.0

8 73 18 75.3

The reason for the reduction in effective member size can be seen in a
distribution of the problem task among team individuals whereby the
subtask each member has to fulfill gets smaller and easier. A second
indication can be seen in Table 11.9, where average member error (on
the basis of the full training set) increases respectively. Probably, beyond
a certain number of individuals a task cannot be split any further. As
a result, members keep to a certain effective size and prediction quality.
Finally, there is only so small a complexity of programs that can fulfill a
certain function.

The proportion of effective (and intron) code is not significantly affected,
even though genetic operators change half of the members simultaneously
in larger teams.
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11.5.4 Number of Varied Members

All results so far have been produced by varying only a moderate number
of team members simultaneously. To justify this choice, the number of
members varied ranges from 1 to 4 in Table 11.11 while team size remains
fixed. Both prediction and generalization performance are best if only one
individual is varied at a time.

Table 11.11. three functions: Mean square error (MSE × 100) with different numbers
of varied members, averaged over 60 runs. Standard error in parentheses. Number of
team members is 4.

#Varied Members Training MSE Member MSE Validation MSE Test MSE

1 4.1 (0.37) 903 (92) 3.4 (0.30) 3.7 (0.36)

2 5.4 (0.47) 730 (73) 4.8 (0.45) 4.9 (0.47)

3 6.5 (0.44) 538 (50) 5.5 (0.38) 6.3 (0.48)

4 8.3 (0.66) 421 (53) 7.1 (0.61) 7.6 (0.70)

Table 11.12. three functions: Code size of team in instructions for different numbers
of varied members. Number of team members is 4.

#Varied Members Code Size Effective Size Introns (%)

1 440 148 66.4

2 424 125 70.5

3 388 113 70.9

4 320 99 69.1

Table 11.12 demonstrates the correlation between the number of team
members varied and the code size of teams. Interestingly, effective and
absolute code size decrease with variation strength. Although the varia-
tion probability per member is lowest if only one member is varied during
a team operation, the effective code is largest. Simultaneously, the over-
all prediction accuracy of teams increases while average member error is
highest with the lowest level of variation in Table 11.11.

One reason for these findings might be that smaller steps in variation allow
more directed improvements of a solution than larger steps. Obviously, the
effect of variation on the whole team is larger if more members are affected.
In particular, single team individuals may specialize more strongly within
the collective. By doing so, their errors in relation to a solution of the
overall task as well as their complexity increase. As already observed
in Section 11.5.1 higher member errors correspond to a higher degree in
specialization.

Another reason might be that it is easier for smaller team solutions to
survive during evolution. Lower (effective) complexity is the dominating
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protection against destruction here. The intron proportion is not affected
significantly, i.e., the proportion of effective and noneffective code remains
relatively constant in programs. Similar results have been found in Section
6.4.4 where a smaller variation step size, i.e., number of mutation points,
produced better and larger effective programs.

11.5.5 Interpositional Recombination

In the preceding experiments recombination was restricted to happen
between program members at the same position in both teams (in-
trapositional recombination). It has been argued in Section 11.3.1 that in
teams of multiple predictors – where by definition each member solves the
same problem – allowing recombination between different member posi-
tions (interpositional recombination) could be beneficial. Only by inter-
positional recombination, member code can be moved from one position
to another.

Table 11.13. two chains: Classification error (CE) in percent, averaged over 60 runs,
with restricted (reprinted from Table 11.3) and unrestricted recombination. Standard
error in parentheses.

Recombination Training MSE Member MSE Validation MSE Test MSE

free 0.34 (0.05) 25.7 (1.42) 0.65 (0.10) 1.82 (0.11)

restricted 0.44 (0.08) 25.8 (1.96) 0.82 (0.12) 2.08 (0.14)

Table 11.14. three functions: Mean square error (MSE × 100), averaged over 60 runs,
with restricted (reprinted from Table 11.5) and unrestricted recombination. Standard
error in parentheses.

Recombination Training MSE Member MSE Validation MSE Test MSE

free 4.4 (0.27) 682 (44) 3.7 (0.23) 3.8 (0.23)

restricted 4.7 (0.27) 738 (50) 3.9 (0.22) 4.3 (0.25)

Tables 11.13 and 11.14 show results for restricted and unrestricted recom-
bination. Free (interpositional) recombination performs slightly better
than restricted recombination with the problems tested. Thus, intrapo-
sitional recombination might be less relevant when dealing with teams of
predictors. At least, it does not seem to have any positive influence.

11.5.6 Member Fitness

Finally, we investigate the effect of including (δ = 1) or not including
(δ = 0) the average member error in the fitness function (Equation 11.7).
Results in Tables 11.15 and 11.16 document that the average fitness of
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team members is significantly better without the inclusion. This reduces
the specialization potential of members because the cooperating individ-
uals are restricted to be good predictors on their own. As a result, the
quality of team prediction decreases significantly if individual errors are
included.

Table 11.15. two chains: Classification error (CE) in percent, averaged over 60 runs,
with and without including member fitness in Equation 11.7. Standard error in paren-
theses.

δ Training MSE Member MSE Validation MSE Test MSE

0 0.44 (0.08) 25.8 (1.96) 0.82 (0.12) 2.08 (0.14)

1 1.91 (0.21) 12.4 (0.61) 3.00 (0.25) 3.92 (0.28)

Table 11.16. three functions: Mean square error (MSE × 100), averaged over 60 runs,
with and without including member fitness. Standard error in parentheses.

δ Training MSE Member MSE Validation MSE Test MSE

0 4.7 (0.27) 738 (50) 3.9 (0.22) 4.3 (0.25)

1 19.4 (0.49) 34.6 (1.6) 18.0 (0.49) 18.1 (0.51)

If, on the other hand, individual errors are not included in the fitness
function there is no direct relation between fitness of a single member
and the quality of the common team solution. This allows the errors of
members to differ quite strongly within a team and to be significantly
larger than the team error.

11.6 Combination of Multiple Program Outputs

There is another interesting method of team evolution in linear GP. In the
standard case, a single register content is defined as the output of a linear
program. The program response, however, can be derived from more than
one register. Multiple outputs of a single program may be interpreted as
multiple predictions and can be combined by using the same methods as
proposed for team solutions in this chapter.

The aggregation of several program outputs may be supposed to promote
internal parallelism of calculations as well as a specialization of subpro-
grams. But it has to be noted that a linear program may already combine
multiple calculation paths, i.e., the content of multiple registers in its
regular working.

Depending on the number of registers complementary subsolutions can
be computed by using relatively independent sets of registers in the same
program. Then subprograms would represent almost disconnected com-
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ponents of the data flow graph. A complete separation like between team
members, however, is rather unlikely, even if the number of registers is
high compared to the number of inputs.

11.7 Summary and Conclusion

The results of this chapter can be summarized as follows:

� The team approach was applied successfully to several prediction prob-
lems and has been found to reduce both training error and generalization
error significantly compared to the individual approach. This was already
achieved by using standard averaging to combine outputs of team pro-
grams.

� Several linear combination methods were compared while different
methods turned out to be the most successful ones. Two benchmark
problems were presented on which either a winner-takes-all combination
(WTA) or the coevolution of variable member weights (EVOL) performed
notably better than other approaches.

� The average effective complexity of teams with four members was only
about two times larger than stand-alone solutions. With some combi-
nation methods, team solutions have been found that are even smaller.
Thus, the evolution of program teams is quite efficient because (struc-
turally) noneffective instructions are not executed.

� A high degree of specialization and cooperation has been observed such
that team members showed a much lower prediction performance and
a smaller (effective) size than individuals. Beyond a certain optimum
number of team members, however, both features did not change any
more. One explanation could be that the overall problem task cannot be
further divided into smaller subtasks.

� By including the prediction errors of members in the fitness function
of teams, their specialization potential was reduced drastically. While
the average member performance increased the overall team performance
decreased.

� Best team solutions emerged with no more than one team member
being varied at a time. Interestingly, teams seemed to be smaller and less
specialized if several members were varied simultaneously.

� Intrapositional recombination of members has not been found to be
more powerful than interpositional recombination for teams of predictors.



Epilogue

What have we achieved and where do we go from here?

This book has discussed linear genetic programming, a variant of GP
that employs sequences of imperative instructions as genetic material.
We focused on properties and behaviors of the linear representation and
argued that it has a number of advantages over tree-based GP. We also
pointed out extended similarities with its biological counterpart – the
DNA sequence – that have so far not been appreciated sufficiently in the
literature. For example, the fact that non-coding subsequences can be
kept in the code and manipulated silently, i.e., without being activated,
is pretty much analogous to what happens in real genomes.

Thinking in terms of data flow and register connections allowed us to
accelerate artificial evolution in linear GP by considerable factors, on the
basis of both absolute runtime and number of generations. It also allowed
us to considerably increase the efficiency of evolutionary search operators.
This led to an induction of more powerful solutions while at the same time
keeping solution size and code growth under control.

We used a variety of benchmark problems to produce empirical results
that were able to shed light on fundamental questions in GP and linear
GP, in particular. We ventured to explain non-trivial phenomena and
to develop powerful techniques, all with an eye to their implications on
the practice of GP. As an empirical text, the book is heavily based on
experimental data. These were generated through thousands of GP runs,
comprising millions of program evaluations done with billions of CPU
cycles.

Naturally, this book cannot have the last word on linear GP. If it has
helped to promote the popularity of the approach and has opened avenues
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for further inquiry, it has served a good purpose. We sincerely hope to
have conveyed the message and convinced the reader to give this method
a try.

As we have already emphasized in the preface to this book, we hope read-
ers have enjoyed immersing themselves into genetic programming reality.
There are so many aspects of GP still under-explored, and so many ques-
tions not answered, and so many not even asked yet, that research on code
evolution will go on for many years to come. Perhaps some of you will
have conceived of an idea during reading this text. It is now time for you
to take action and implement this idea in an actual GP setting, coming
up with interesting answers and perhaps even more interesting questions.
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